1
|
Mineo S. Groundwater and soil contamination by LNAPL: State of the art and future challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162394. [PMID: 36858232 DOI: 10.1016/j.scitotenv.2023.162394] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/05/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Contamination by Light Non-Aqueous Phase Liquids (LNAPL) represents a challenge due to the difficulties encountered in its underground assessment and recovery. The major risks arising from subsoil LNAPL accumulation face human health and environment, gaining a social relevance also in the frame of a continuously changing climate. This paper reports on a literature review about the underground contamination by LNAPL, with the aims of providing a categorization of the aspects involved in this topic, analyzing the current state of the art, underlying potential lacks and future perspectives. The review was focused on papers published in the 2012-2022 time-interval, in journals indexed in Scopus and WoS databases, by querying "LNAPL" within article title, abstract and/or key words. 245 papers were collected and classified according to three "key approaches" -namely laboratory activity, field based-data studies and mathematical simulations- and subordinate "key themes", so to allow summarizing and commenting the main aspects based on the application setting, content and scope. Results show that there is a wide experience on plume dynamics and evolution, detection and monitoring through direct and indirect surveys, oil recovery and natural attenuation processes. Few cues of innovations were found regarding both the use of new materials and/or specific field configuration for remediation, and the application of new techniques for plume detection. Some limitations were found in the common oversimplification of the polluted media in laboratory or mathematical models, where the contamination is set within homogeneous porous environments, and in the low number of studies focused on rock masses, where the discontinuous hydraulic behavior complicates the address and modeling of the issue. This paper represents a reference for a quick update on the addressed topic, along with a starting point to develop new ideas and cues for the advance in one of the greatest environmental banes of the current century.
Collapse
Affiliation(s)
- S Mineo
- University of Catania, Department of Biological, Geological and Environmental Sciences, Corso Italia 57, Catania 95123, Italy.
| |
Collapse
|
2
|
Zuo R, Shi J, Han K, Xu D, Li Q, Zhao X, Xue Z, Xu Y, Wu Z, Wang J. Response relationship of environmental factors caused by toluene concentration during leaching of capillary zone. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115366. [PMID: 35636110 DOI: 10.1016/j.jenvman.2022.115366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Due to the leaching of capillary water, the petroleum pollutants initially trapped in vadose zone may migrate to lower aquifer, thus increasing the risk of groundwater pollution. In order to explore the effect of capillary leaching on toluene-contaminated soil and the relationship between toluene concentration (TC) and environmental factors (EFs) during the leaching process, the sterilized and non-sterilized soil column experiments were designed. The EFs were used to estimate TC. The results showed that the difference between leaching and volatilization rates directly determined the changing trend of toluene concentration in capillary water. The toluene concentration in the medium always showed decreasing trend due to leaching. The indigenous microbial community structure of the non-sterilized soil column was analyzed by 16S rRNA sequencing. It was found that indigenous microorganisms could degrade toluene after 33.0 days of acclimatation. The microbial population was dominated by bacteria, among them the Ellin6055 strain and Pseudomonas, Pseudoxanthomonas, Cupriavidus, Bdellovibrio, Sphingobium, Phenylobacterium, Ramlibacter, Bradyrhizobium, Shinella genera. The Pseudomonas was the most crucial bacterial genus that degraded toluene. Indigenous microbial degradation was the fundamental reason for strong response relationship. Furthermore, we suggested a relationship of function between environmental factors (pH, DO, ORP) and time (t) for toluene attenuation: C0+ln(eAtαBγCβ)=CToluene, (α, β, γ represent the pH, DO, and ORP in leaching capillary water, respectively; A, B, and C represent undetermined coefficients), and the fitting coefficient R2 > 0.950. This relationship can only characterize the attenuation process of capillary zone leaching on toluene. However, it may still be utilized to give a theoretical foundation for understanding the dynamic of pollutant concentration change processes under specific environmental factors.
Collapse
Affiliation(s)
- Rui Zuo
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Jian Shi
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Kexue Han
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China.
| | - Donghui Xu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Qiao Li
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Xiao Zhao
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Zhenkun Xue
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Yunxiang Xu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Ziyi Wu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Jinsheng Wang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| |
Collapse
|
3
|
Toluene Bioremediation by Using Geotextile-Layered Permeable Reactive Barriers (PRBs). Processes (Basel) 2021. [DOI: 10.3390/pr9060906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sources of contamination in a subsurface environment are petrol, diesel fuel, gasoline at oil refineries, underground storage tanks, transmission pipelines, and different industries. The permeable reactive barrier (PRB) is a promising technology to remediate groundwater in-situ. In this study, synthetic groundwater samples containing toluene are treated in three reactor columns by biological processes. PRB-1 consisted of sand and gravel as reactor media, microbial inoculum (bioaugmentation—BA), and nutrients (biostimulation—BS); PRB-2 consisted of sand and gravel as reactor media, microbial inoculum, nutrients, and 12 layers of nonwoven geotextile fabrics; and PRB-3 consisted of only sand and gravel as reactor media (natural attenuation—NA). This study was conducted to assess the impact of geotextile fabric filter, bioaugmentation, and biostimulation on toluene degradation efficiency. After 167 days of treatment, toluene biodegradation efficiencies varied between 88.2% and 93.8% for PRB 1, between 98.0% and 99.3% for PRB 2, and between 14.2% and 68.6% for PRB 3. The effluent toluene concentrations for PRB-2 were less than the guideline value (0.7 mg/L) of the World Health Organization. Reaction rate data were fitted with a first-order kinetic reaction rate model. This study showed that the toluene removal efficiency in the geotextile layered PRB combined with BA and BS process was significantly higher compared to the other processes tested. This lab-scale study introduced a new PRB configuration suitable for the remediation of sites contaminated with toluene.
Collapse
|
4
|
Abstract
AbstractThe aim of this work is to assess the risk of groundwater contamination associated with BTEX dissolution from fuels as a residual phase. Numerical simulations of sixty scenarios were carried out with the software HYDRUS 2D/3D. Groundwater contamination risk was analyzed given the combination of different porous media textures (silt loam, sandy loam and clay), water fluxes (0.5%, 1% or 3% Rainfall), water table depths (1.5, 2.5, 5 or 8 m below ground surface) and biodegradation rate (active or null). Risk was calculated comparing leachate concentrations to the aquifer and limits established by an international guideline for human drinking water. In all cases, benzene and toluene had the highest mobility in the dissolved phase. Contrary, xylene and ethylbenzene tended to concentrate close to the source zone. These two compounds predominantly concentrated in the solid phase. Calculated risk was proportional to the water flux rate and inversely proportional to the unsaturated thickness. Without biodegradation, in fine-grained sediments risk was very high for shallow aquifers (> 1.5 m depth) and moderate or low for deeper aquifers. However, in sandy loam sediments risk was classified as very high for aquifers up to 8 m deep. When biodegradation was considered, leached concentrations were greatly reduced in the three textures. BTEX concentration in Bahía Blanca City´s aquifer showed acceptable agreement with simulated scenarios. The most sensitive parameters to model results were biodegradation > foc > water table depth > Ks. This study is important for assessing the risks and developing management strategies for fuel contaminated sites.
Collapse
|