1
|
Khan SA, Jain M, Pant KK, Ziora ZM, Blaskovich MAT. Photocatalytic degradation of parabens: A comprehensive meta-analysis investigating the environmental remediation potential of emerging pollutant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171020. [PMID: 38369133 DOI: 10.1016/j.scitotenv.2024.171020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
The increasing prevalence of paraben compounds in the environment has given rise to concerns regarding their detrimental impacts on both ecosystems and human health. Over the past few decades, photocatalytic reactions have drawn significant attention as a method to accelerate the otherwise slow degradation of these pollutants. The current study aims to evaluate the current efficacy of the photocatalytic method for degrading parabens in aqueous solutions. An extensive literature review and bibliometric analysis were conducted to identify key research trends and influential areas in the field of photocatalytic paraben degradation. Studies were screened based on the predetermined inclusion and exclusion criteria, which led to 13 studies that were identified as being appropriate for the meta-analysis using the random effects model. Furthermore, experimental parameters such as pH, paraben initial concentration, catalyst dosage, light intensity, and contact time have been reported to have key impacts on the performance of the photocatalytic degradation process. A comprehensive quantitative assessment of these parameters was carried out in this work. Overall, photocatalytic techniques could eliminate parabens with an average degradation efficiency of >80 %. The findings of the Egger's test and the Begg's test were statistically not significant suggesting potential publication bias was not observed. This review provides a holistic understanding of the photocatalytic degradation of parabens and is anticipated to encourage more widespread adoption of photocatalytic procedures as a suitable method for the elimination of parabens from aqueous solutions, opening new avenues for future research in this direction.
Collapse
Affiliation(s)
- Sadaf Aiman Khan
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Marut Jain
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kamal Kishore Pant
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India.
| | - Zyta Maria Ziora
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mark A T Blaskovich
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
2
|
Alhamzani AG, Yousef TA, Abou-Krisha MM, Kumar KY, Prashanth MK, Parashuram L, Hun Jeon B, Raghu MS. Fabrication of layered In 2S 3/WS 2 heterostructure for enhanced and efficient photocatalytic CO 2 reduction and various paraben degradation in water. CHEMOSPHERE 2023; 322:138235. [PMID: 36841457 DOI: 10.1016/j.chemosphere.2023.138235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/31/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Because of the excessive use of fossil fuels, CO2 emissions into the environment are increasing. An efficient method of converting CO2 to useful carbonaceous products in the presence of light is one way to address the issues associated with energy and environmental remediation. In2S3/WS2 heterostructure has been fabricated using the efficient hydrothermal method. The results of structural, morphological, optical, and photo/electrochemical characterization confirm the formation of a hierarchical, layered heterostructure of type-II. Enhanced photocatalytic activity is observed in InS/WS heterostructure compared to pristine In2S3 and WS2. InS/WS heterostructure exhibit higher photocatalytic activity than pure In2S3 and WS2. For 12 h, photocatalytic CO2 reduction produces 213.4 and 188.6 μmol of CO and CH4, respectively. Furthermore, the photocatalytic ability of the synthesized materials to degrade different parabens (Methyl: MPB, Ethyl: EPB, and Benzyl: BPB) under visible radiation was evaluated. Under optimized conditions, the InS/WS heterostructure degraded 88.6, 90.4, and 95.8% of EPB, BPB, and MPB, respectively, in 90 min. The mechanism of photocatalysis was discussed in detail. MCF-7 cell viability was assessed and found to exhibit low mortality in InS/WS treated MPB aqueous solution. InS/WS heterostructure could improve the fabrication of more sulphide-based layered materials to combat environmental pollution.
Collapse
Affiliation(s)
- Abdulrahman G Alhamzani
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University, (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Tarek A Yousef
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University, (IMSIU), Riyadh, 11623, Saudi Arabia; Department of Toxic and Narcotic Drug, Forensic Medicine, Mansoura Laboratory, Medicolegal Organization, Ministry of Justice, Egypt
| | - Mortaga M Abou-Krisha
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University, (IMSIU), Riyadh, 11623, Saudi Arabia; Department of Chemistry, South Valley University, Qena, 83523, Egypt
| | - K Yogesh Kumar
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Bangalore, 562112, India
| | - M K Prashanth
- Department of Chemistry, BNM Institute of Technology, Banashankari, Bangalore, 560070, India
| | - L Parashuram
- Department of Chemistry, Nitte Meenakshi Institute of Technology, Yelahanka, Bangalore, 560064 India
| | - Byong Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - M S Raghu
- Department of Chemistry, New Horizon College of Engineering, Outer Ring Road, Bangalore, 560103, India.
| |
Collapse
|
3
|
Strach A, Dulski M, Wasilkowski D, Metryka O, Nowak A, Matus K, Dudek K, Rawicka P, Kubacki J, Waloszczyk N, Mrozik A, Golba S. Microwave Irradiation vs. Structural, Physicochemical, and Biological Features of Porous Environmentally Active Silver–Silica Nanocomposites. Int J Mol Sci 2023; 24:ijms24076632. [PMID: 37047604 PMCID: PMC10095382 DOI: 10.3390/ijms24076632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
Heavy metals and other organic pollutants burden the environment, and their removal or neutralization is still inadequate. The great potential for development in this area includes porous, spherical silica nanostructures with a well-developed active surface and open porosity. In this context, we modified the surface of silica spheres using a microwave field (variable power and exposure time) to increase the metal uptake potential and build stable bioactive Ag2O/Ag2CO3 heterojunctions. The results showed that the power of the microwave field (P = 150 or 700 W) had a more negligible effect on carrier modification than time (t = 60 or 150 s). The surface-activated and silver-loaded silica carrier features like morphology, structure, and chemical composition correlate with microbial and antioxidant enzyme activity. We demonstrated that the increased sphericity of silver nanoparticles enormously increased toxicity against E. coli, B. cereus, and S. epidermidis. Furthermore, such structures negatively affected the antioxidant defense system of E. coli, B. cereus, and S. epidermidis through the induction of oxidative stress, leading to cell death. The most robust effects were found for nanocomposites in which the carrier was treated for an extended period in a microwave field.
Collapse
Affiliation(s)
- Aleksandra Strach
- Doctoral School, University of Silesia, Bankowa 14, 40-032 Katowice, Poland
| | - Mateusz Dulski
- Institute of Materials Engineering, Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Daniel Wasilkowski
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Oliwia Metryka
- Doctoral School, University of Silesia, Bankowa 14, 40-032 Katowice, Poland
| | - Anna Nowak
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Krzysztof Matus
- Materials Research Laboratory, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
| | - Karolina Dudek
- Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Cementowa 8, 31-938 Cracow, Poland
| | - Patrycja Rawicka
- A. Chełkowski Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Jerzy Kubacki
- A. Chełkowski Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Natalia Waloszczyk
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Agnieszka Mrozik
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Sylwia Golba
- Institute of Materials Engineering, Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
4
|
Ag2CO3-Based Photocatalyst with Enhanced Photocatalytic Activity for Endocrine-Disrupting Chemicals Degradation: A Review. Catalysts 2023. [DOI: 10.3390/catal13030540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) in the aquatic environment have garnered a lot of attention during the past few years. Due to their toxic behavior, which interferes with endocrine functions in both humans and aquatic species, these types of compounds have been recognized as major polluting agents in wastewater effluents. Therefore, the development of efficient and sustainable removal methods for these emerging contaminants is essential. Photocatalytic removal of emerging contaminants using silver carbonate (Ag2CO3)-based photocatalyst is a promising process due to the unique characteristics of this catalyst, such as absorption of a larger fraction of the solar spectrum, wide band gap, non-toxicity, and low cost. The photocatalytic performance of Ag2CO3 has recently been improved through the doping of elements and optimization variation of operational parameters resulting in decreasing the rate of electron–hole pair recombination and an increase in the semiconductor’s excitation state efficiency, which enables the degradation of contaminants under UV or visible light exposure. This review summarized some of the relevant investigations related to Ag2CO3-based photocatalytic materials for EDC removal from water. The inclusion of Ag2CO3-based photocatalytic materials in the water recovery procedure suggests that the creation of a cutting-edge protocol is essential for successfully eliminating EDCs from the ecosystem.
Collapse
|
5
|
Photocatalytic Degradation of 4-tert-butylphenol Using Solar Light Responsive Ag2CO3. Catalysts 2022. [DOI: 10.3390/catal12121523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
In this work, Ag2CO3 was prepared via a solution-based method and was further characterized by XRD, Raman spectroscopy, SEM/EDS analysis, and UV-VIS spectroscopy. SEM results revealed the formation of micro-sized particles with a rectangular shape. The photocatalytic activity of the catalyst was evaluated in the degradation of 4-tert-butylphenol (4-t-BP) under simulated solar light irradiation. The effects of 4-t-BP initial concentration (2.5–10 ppm), catalyst dosage (100–300 mg/L), different types of lamp sources, and water matrix were investigated. Complete 4-t-BP (5 ppm) degradation was achieved after 60 min by Ag2CO3 (200 mg/L). The effect of anions such as CO32−, HCO3−, NO3−, and Cl- in the concentration range of 100–300 mg/L was also studied. CO32− promoted the photocatalytic degradation process, while HCO3− and NO3− exhibited an inhibition effect, which was marked with increasing HCO3− and NO3− concentrations. The presence of Cl− at the concentration of 100 mg/L increased 4-t-BP degradation, but higher concentrations inhibited the photocatalytic reaction. Cyclic experiments showed that the catalyst practically retained its catalytic activity toward 4-t-BP degradation after three successive experimental runs.
Collapse
|
6
|
Synthesis of a biomimetically formed core–shell SiO2@Ag photocatalyst for the degradation of aqueous organic pollutants. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
John N, Priyanka RN, Abraham T, Punnoose MS, John BK, Mathew B. Rational design of Ag 2CO 3-loaded SGO heterostructure with enhanced photocatalytic abatement of organic pollutants under visible light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53225-53237. [PMID: 35278183 DOI: 10.1007/s11356-022-19606-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The photocatalytic activity of semiconducting silver carbonate was restricted by the lower stability and fast recombination rate of photogenerated electron-hole pairs. Sulfur-doped graphene oxide (SGO) is used as a cocatalyst for improving the photocatalytic activity of Ag2CO3 by reducing the recombination rate. A simple precipitation method was used for the modification of silver carbonate. The chemical, physical, optical, and electrochemical properties of the modified photocatalyst was characterized by XRD, SEM, TEM, UV-vis DRS, XPS, CV, impedance, and amperometry. The fabricated SGO-Ag2CO3 composite was successfully degraded various organic pollutants such as methylene blue (MB), rhodamine B(RhB), methyl orange (MO), tartrazine, and thiram with augmented mineralization. The optimization of weight percentage of the developed binary composite with 0.5% SGO-Ag2CO3 showed enhanced photocatalytic degradation and followed pseudo-first-order kinetics with rate constant 0.126. More than 90% of degradation efficiency of the pollutants within a short time promises the binary heterostructure for future industrial applications. The excellent stability and reproducibility of the composite opened a new route in the treatment of wastewater.
Collapse
Affiliation(s)
- Neenamol John
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Ragam N Priyanka
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Thomas Abraham
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | | | - Bony K John
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Beena Mathew
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India.
| |
Collapse
|
8
|
Saravanan A, Kumar PS, Jeevanantham S, Anubha M, Jayashree S. Degradation of toxic agrochemicals and pharmaceutical pollutants: Effective and alternative approaches toward photocatalysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118844. [PMID: 35032600 DOI: 10.1016/j.envpol.2022.118844] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/27/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Emerging concern regarding the remediation of environmental pollution has expanded tremendously in recent years. Pharmaceutical industries and agricultural sectors release an enormous amount of residues containing toxic pollutants at trace levels which poses a serious impact on the environment and human health. To cope with the effect of hazardous and toxic contaminants, numerous methodologies have been developed for the treatment of effluents released from the agrochemical and pharmaceutical industries. Amongst them, photocatalysis has gained much more attention for the degradation of pollutants due to its low cost, higher capability, green and eco-friendly approaches. Photocatalysts are the substrate that plays a key role in pollutant removal through photocatalysis by accelerating the necessary chemical reactions using a light source. In this review, the recent progress on photocatalysis and its fundamental mechanism in agrochemicals and pharmaceutical pollutant degradation was summarized. This review concisely discusses the incorporation of various metal oxides and nanomaterials into semiconductors for the effective degradation of contaminants. The current status and future research on different sectors and the difficulties in the photocatalytic removal of agrochemical and pharmaceutical pollutants are also reviewed in detail.
Collapse
Affiliation(s)
- A Saravanan
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - M Anubha
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - S Jayashree
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| |
Collapse
|
9
|
Bolujoko NB, Unuabonah EI, Alfred MO, Ogunlaja A, Ogunlaja OO, Omorogie MO, Olukanni OD. Toxicity and removal of parabens from water: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148092. [PMID: 34147811 DOI: 10.1016/j.scitotenv.2021.148092] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/04/2021] [Accepted: 05/24/2021] [Indexed: 05/06/2023]
Abstract
Parabens are biocides used as preservatives in food, cosmetics and pharmaceuticals. They possess antibacterial and antifungal activity due to their ability to disrupt cell membrane and intracellular proteins, and cause changes in enzymatic activity of microbial cells. Water, one of our most valuable natural resource, has become a huge reservoir for parabens. Halogenated parabens from chlorination/ozonation of water contaminated with parabens have shown to be even more persistent in water than other types of parabens. Unfortunately, there is dearth of data on their (halogenated parabens) presence and fate in groundwater which serves as a major source of drinking water for a huge population in developing countries. An attempt to neglect the presence of parabens in water will expose man to it through ingestion of contaminated food and water. Although there are reviews on the occurrence, fate and behaviour of parabens in the environment, they largely omit toxicity and removal aspects. This review therefore, presents recent reports on the acute and chronic toxicity of parabens, their estrogenic agonistic and antagonistic activity and also their relationship with antimicrobial resistance. This article further X-rays several techniques that have been employed for the removal of parabens in water and their drawbacks including adsorption, biodegradation, membrane technology and advanced oxidation processes (AOPs). The heterogeneous photocatalytic process (one of the AOPs) appears to be more favoured for removal of parabens due to its ability to mineralize parabens in water. However, more work is needed to improve this ability of heterogeneous photocatalysts. Perspectives that will be relevant for future scientific studies and which will drive policy shift towards the presence of parabens in our drinking waters are also offered. It is hoped that this review will elicit some spontaneous actions from water professionals, scientists and policy makers alike that will provide more data, effective technologies, and adaptive policies that will address the growing threat of the presence of parabens in our environment with respect to human health.
Collapse
Affiliation(s)
- Nathaniel B Bolujoko
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria; African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Emmanuel I Unuabonah
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria; African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria.
| | - Moses O Alfred
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria; African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Aemere Ogunlaja
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria
| | - Olumuyiwa O Ogunlaja
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemical Sciences, Faculty of Basic Medical and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Martins O Omorogie
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria; African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Olumide D Olukanni
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Nigeria
| |
Collapse
|
10
|
Nguyen VH, Phan Thi LA, Chandana PS, Do HT, Pham TH, Lee T, Nguyen TD, Le Phuoc C, Huong PT. The degradation of paraben preservatives: Recent progress and sustainable approaches toward photocatalysis. CHEMOSPHERE 2021; 276:130163. [PMID: 33725624 DOI: 10.1016/j.chemosphere.2021.130163] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 05/06/2023]
Abstract
Parabens are a class of compounds primarily used as antimicrobial preservatives in pharmaceutical products, cosmetics, and foodstuff. Their widely used field leads to increasing concentrations detected in various environmental matrices like water, soil, and sludges, even detected in human tissue, blood, and milk. Treatment techniques, including chemical advanced oxidation, biological degradation, and physical adsorption processes, have been widely used to complete mineralization or to degrade parabens into less complicated byproducts. All kinds of processes were reviewed to give a completed picture of parabens removal. In light of these treatment techniques, advanced photocatalysis, which is emerging rapidly and widely as an economical, efficient, and environmentally-friendly technique, has received considerable attention. TiO2-based and non-TiO2-based photocatalysts play an essential role in parabens degradation. The effect of experimental parameters, such as the concentration of targeted parabens, concentration of photocatalyst, reaction time, and initial solution pH, even the presence of radical scavengers, are surveyed and compared from the literature. Some representative parabens such as methylparaben, propylparaben, and benzylparaben have been successfully studied the reaction pathways and their intermediates in their degradation process. As reported in the literature, the degradation of parabens involves the production of highly reactive species, mainly hydroxyl radicals. These reactive radicals would attack the paraben preservatives, break, and finally mineralize them into simpler inorganic and nontoxic molecules. Concluding perspectives on the challenges and opportunities for photocatalysis toward parabens remediation are also intensively highlighted.
Collapse
Affiliation(s)
- Van-Huy Nguyen
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Lan-Anh Phan Thi
- VNU Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, Viet Nam; Center for Environmental Technology and Sustainable Development (CETASD), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, Viet Nam.
| | - P Sri Chandana
- Department of Civil and Environmental Engineering, Annamacharya Institute of Technology and Sciences, Kadapa, 516003, A.P., India.
| | - Huu-Tuan Do
- Faculty of Environmental Science, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, Viet Nam
| | - Thuy-Hanh Pham
- Faculty of Environmental Science, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, Viet Nam
| | - Taeyoon Lee
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Trinh Duy Nguyen
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea; Center of Excellence for Green Energy and Environmental Nanomaterials (CE GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| | - Cuong Le Phuoc
- Department of Environmental Management, Faculty of Environment, The University of Da Nang - University of Science and Technology, Da Nang, 550000, Viet Nam
| | - Pham Thi Huong
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Danang, 550000, Viet Nam
| |
Collapse
|
11
|
Kohli HP, Gupta S, Chakraborty M. Comparative studies on the separation of endocrine disrupting compounds from aquatic environment by emulsion liquid membrane and hollow fiber supported liquid membrane. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2021. [DOI: 10.1515/ijcre-2020-0153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Endocrine disrupting compounds have been found to limit the natural working of the endocrine system like synthesis, secretion, transference and binding. Endocrine disrupting compounds are released from humans, animals and from production industries to soil, surface water and sediments mostly through the sewage treatment system. Studies have revealed the impact of these compounds on the nervous system, lungs, liver, thyroid, prostate, metabolism, obesity and reproductive system. So removal of these compounds from sewage water/wastewater by appropriate processes is essential. Conventional techniques like coagulation, precipitation, flocculation, microfiltration and ultrafiltration are effective for the removal of these compounds but limitations like low molecular weight of these compounds and pore size of membrane restricts the complete removal. Liquid membrane is a promising technology which combines the steps like extraction and stripping in a single step thereby providing the instantaneous removal and recovery of solutes and also results in high selectivity and savings of chemicals. This paper mainly focuses on the use of liquid membrane techniques like emulsion liquid membrane and hollow fiber supported liquid membrane which are the promising techniques for the removal of endocrine disrupting compounds from aqueous streams. The working principle, mechanism and implementation of these two techniques in the removal of several endocrine disrupting compounds from aquatic streams are also discussed.
Collapse
Affiliation(s)
- Himanshu P. Kohli
- Department of Chemical Engineering , Sardar Vallabhbhai National Institute of Technology , Surat 395007 , Gujarat , India
- Department of Chemical Engineering , R. N. G. Patel Institute of Technology , Bardoli 394620 , Gujarat , India
| | - Smita Gupta
- Department of Chemical Engineering , Sardar Vallabhbhai National Institute of Technology , Surat 395007 , Gujarat , India
| | - Mousumi Chakraborty
- Department of Chemical Engineering , Sardar Vallabhbhai National Institute of Technology , Surat 395007 , Gujarat , India
| |
Collapse
|
12
|
Kohli HP, Gupta S, Chakraborty M. Statistical analysis of operating variables for pseudo-emulsion hollow fiber strip dispersion technique: ethylparaben separation from aqueous feed stream. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01317-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|