1
|
Zhao R, Meng F, Wu Q, Zhong Z, Liu Y, Yang R, Li A, Liu H, Lu Y, Zhang Z, Li Q, Zhao H, Li J, Han L, Zuo K. Ultra-antiwetting Membrane for Hypersaline Water Crystallization in Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14929-14939. [PMID: 39126388 DOI: 10.1021/acs.est.4c05283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Membrane distillation (MD) has great potential in the management of hypersaline water for zero liquid discharge (ZLD) due to its high salinity tolerance. However, the membrane wetting issue significantly restricts its practical application. In this study, a composite membrane tailored for extreme concentrations and even crystallization of hypersaline water is synthesized by coating a commercial hydrophobic porous membrane with a composite film containing a dense polyamide layer, a cation exchange layer (CEL), and an anion exchange layer (AEL). When used in direct contact MD for treating a 100 g L-1 NaCl hypersaline solution, the membrane achieves supersaturation of feed solution and a salt crystal yield of 38.0%, with the permeate concentration at <5 mg L-1. The composite membrane also demonstrates ultrahigh antiwetting stability in 360 h of long-term operation. Moreover, ion diffusion analysis reveals that the ultrahigh wetting resistance of the composite membrane is attributed to the bipolar AEL and CEL that eliminate ion crossover. The literature review elucidates that the composite membrane is superior to state-of-the-art membranes. This study demonstrates the great potential of the composite membrane for direct crystallization of hypersaline water, offering a promising approach to filling the gap between reverse osmosis and conventional thermal desalination processes for ZLD application.
Collapse
Affiliation(s)
- Ruixue Zhao
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Fanxu Meng
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| | - Qinghao Wu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zihan Zhong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuanfeng Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ruotong Yang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
- Pollution Prevention Biotechnology Laboratory of Hebei Province, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Ao Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Huan Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
- Shanxi Laboratory for Yellow River, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China
| | - Yanyu Lu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zishuai Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| | - Qilin Li
- Department of Civil and Environmental Engineering, Rice University, MS 319, 6100 Main Street, Houston, Texas 77005, United States
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, MS 6398, 6100 Main Street, Houston, Texas 77005, United States
| | - Huazhang Zhao
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jianfeng Li
- Shanxi Laboratory for Yellow River, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China
| | - Le Han
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Kuichang Zuo
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Tan YZ, Alias NH, Aziz MHA, Jaafar J, Othman FEC, Chew JW. Progress on Improved Fouling Resistance-Nanofibrous Membrane for Membrane Distillation: A Mini-Review. MEMBRANES 2023; 13:727. [PMID: 37623788 PMCID: PMC10456459 DOI: 10.3390/membranes13080727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Nanofibrous membranes for membrane distillation (MD) have demonstrated promising results in treating various water and wastewater streams. Significant progress has been made in recent decades because of the development of sophisticated membrane materials, such as superhydrophobic, omniphobic and Janus membranes. However, fouling and wetting remain crucial issues for long-term operation. This mini-review summarizes ideas as well as their limitations in understanding the fouling in membrane distillation, comprising organic, inorganic and biofouling. This review also provides progress in developing antifouling nanofibrous membranes for membrane distillation and ongoing modifications on nanofiber membranes for improved membrane distillation performance. Lastly, challenges and future ways to develop antifouling nanofiber membranes for MD application have been systematically elaborated. The present mini-review will interest scientists and engineers searching for the progress in MD development and its solutions to the MD fouling issues.
Collapse
Affiliation(s)
- Yong Zen Tan
- School of Chemistry, Chemical and Biotechnology Engineering, Nanyang Technological University, Singapore 637459, Singapore;
| | - Nur Hashimah Alias
- School of Chemistry, Chemical and Biotechnology Engineering, Nanyang Technological University, Singapore 637459, Singapore;
- Department of Oil and Gas Engineering, School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | - Mohd Haiqal Abd Aziz
- Department of Chemical Engineering Technology, Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub Muar, Batu Pahat 84600, Johor, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Center (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia;
| | - Faten Ermala Che Othman
- Digital Manufacturing & Design Center (DManD), Singapore University of Technology & Design, 8 Somapah Road, Singapore 487372, Singapore;
| | - Jia Wei Chew
- School of Chemistry, Chemical and Biotechnology Engineering, Nanyang Technological University, Singapore 637459, Singapore;
- Singapore Membrane Technology Center, Nanyang Technological University, Singapore 637141, Singapore
| |
Collapse
|
3
|
Preparation and characterization of PPO/PS porous membrane for desalination via direct contact membrane distillation (DCMD). J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Nambikkattu J, Jacob Kaleekkal N. Investigating the performance of surface-engineered membranes for direct contact membrane distillation. SEP SCI TECHNOL 2023. [DOI: 10.1080/01496395.2023.2178011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Jenny Nambikkattu
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India
| | - Noel Jacob Kaleekkal
- Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India
| |
Collapse
|
5
|
Zhang Y, Chong JY, Zhao Y, Xu R, Asakawa A, Wang R. Facile hydrophobic modification of hydrophilic membranes by fluoropolymer coating for direct contact membrane distillation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
6
|
Nassif AG, Ibrahim SS, Majdi HS, Alsalhy QF. Ethanol Separation from an Ethanol-Water Solution Using Vacuum Membrane Distillation. MEMBRANES 2022; 12:807. [PMID: 36005722 PMCID: PMC9412536 DOI: 10.3390/membranes12080807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The vacuum membrane distillation (VMD) process was applied to separate ethanol from a simulated ethanol-water solution using a commercial polytetrafluoroethylene (PTFE) membrane. The presence of ethanol in the ethanol-water solution with a 2 wt.% ethanol concentration at a temperature above 40 °C during the MD process may result in membrane failure due to an increase in the chance of the PTFE membrane wetting at high temperatures. Therefore, the operating temperature in this study was not higher than 35 °C, with an initial ethanol concentration up to 10 wt.%. This work focuses on optimizing the VMD operating parameters using the Taguchi technique based on an analysis of variance (ANOVA). It was found that the feed temperature was the most-affected parameter, leading to a significant increase in the permeation flux of the PTFE membrane. Our results also showed that the permeate flux was reported at about 24.145 kg/m2·h, with a separation factor of 8.6 of the permeate under the operating conditions of 2 wt.%, 30 °C, 60 mm Hg(abs), and 0.6 L/min feed (concentration, temperature, permeate vacuum pressure, and flow rate, respectively). The initial feed concentration, vacuum pressure, and feed flow rate have a lower impact on the permeation flux.
Collapse
Affiliation(s)
- Abeer G. Nassif
- Membrane Technology Research Unit, Department of Chemical Engineering, University of Technology-Iraq, Alsinaa Street, Baghdad 10066, Iraq
| | - Salah S. Ibrahim
- Membrane Technology Research Unit, Department of Chemical Engineering, University of Technology-Iraq, Alsinaa Street, Baghdad 10066, Iraq
| | - Hasan Sh. Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon 51001, Iraq
| | - Qusay F. Alsalhy
- Membrane Technology Research Unit, Department of Chemical Engineering, University of Technology-Iraq, Alsinaa Street, Baghdad 10066, Iraq
| |
Collapse
|
7
|
Parani S, Oluwafemi OS. Membrane Distillation: Recent Configurations, Membrane Surface Engineering, and Applications. MEMBRANES 2021; 11:membranes11120934. [PMID: 34940435 PMCID: PMC8708938 DOI: 10.3390/membranes11120934] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022]
Abstract
Membrane distillation (MD) is a developing membrane separation technology for water treatment that involves a vapor transport driven by the vapor pressure gradient across the hydrophobic membrane. MD has gained wide attention in the last decade for various separation applications, including the separation of salts, toxic heavy metals, oil, and organic compounds from aqueous solutions. Compared with other conventional separation technologies such as reverse osmosis, nanofiltration, or thermal distillation, MD is very attractive due to mild operating conditions such as low temperature and atmospheric pressure, and 100% theoretical salt rejection. In this review, membrane distillation’s principles, recent MD configurations with their advantages and limitations, membrane materials, fabrication of membranes, and their surface engineering for enhanced hydrophobicity are reviewed. Moreover, different types of membrane fouling and their control methods are discussed. The various applications of standalone MD and hybrid MD configurations reported in the literature are detailed. Furthermore, studies on the MD-based pilot plants installed around the world are covered. The review also highlights challenges in MD performance and future directions.
Collapse
Affiliation(s)
- Sundararajan Parani
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa;
- Center for Nanomaterials Science Research, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Oluwatobi Samuel Oluwafemi
- Center for Nanomaterials Science Research, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
- Correspondence:
| |
Collapse
|
8
|
Bispacer Multi-Stage Direct Contact Membrane Distillation System: Analytical and Experimental Study. Processes (Basel) 2021. [DOI: 10.3390/pr9081297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A multi-staged direct contact membrane distillation (MDCMD) system is designed considering a novel bispacer configuration in the present study. The proposed bispacer DCMD, which has not been addressed in the literature to best of our knowledge, is considered with two purposes, including increasing mechanical stability and turbulence. As increasing turbulence leads to increasing Nusselt number, the bispacer MDCMD provides higher permeate flux. An analytical approach is considered using energy and mass balance correlation. The effect of bispacer and feed operating conditions, including feed temperature, feed flow rate, feed salinity, and the number of stages on permeate flux and salt rejection of the developed MDCMD, are examined both analytically and experimentally. The performance and sustainability of the developed system were investigated by analyzing the parameters, including thermal efficiency (η), gained output ratio (GOR), and temperature polarization coefficient (TPC).
Collapse
|
9
|
Saavedra A, Valdés H, Mahn A, Acosta O. Comparative Analysis of Conventional and Emerging Technologies for Seawater Desalination: Northern Chile as A Case Study. MEMBRANES 2021; 11:membranes11030180. [PMID: 33807870 PMCID: PMC7999931 DOI: 10.3390/membranes11030180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 01/04/2023]
Abstract
The aim of this work was to study different desalination technologies as alternatives to conventional reverse osmosis (RO) through a systematic literature review. An expert panel evaluated thermal and membrane processes considering their possible implementation at a pilot plant scale (100 m3/d of purified water) starting from seawater at 20 °C with an average salinity of 34,000 ppm. The desalination plant would be located in the Atacama Region (Chile), where the high solar radiation level justifies an off-grid installation using photovoltaic panels. We classified the collected information about conventional and emerging technologies for seawater desalination, and then an expert panel evaluated these technologies considering five categories: (1) technical characteristics, (2) scale-up potential, (3) temperature effect, (4) electrical supply options, and (5) economic viability. Further, the potential inclusion of graphene oxide and aquaporin-based biomimetic membranes in the desalinization processes was analyzed. The comparative analysis lets us conclude that nanomembranes represent a technically and economically competitive alternative versus RO membranes. Therefore, a profitable desalination process should consider nanomembranes, use of an energy recovery system, and mixed energy supply (non-conventional renewable energy + electrical network). This document presents an up-to-date overview of the impact of emerging technologies on desalinated quality water, process costs, productivity, renewable energy use, and separation efficiency.
Collapse
Affiliation(s)
- Aldo Saavedra
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O’Higgins 3363, Estación Central 9160000, Chile; (A.S.); (A.M.)
| | - Hugo Valdés
- Centro de Innovación en Ingeniería Aplicada (CIIA), Departamento de Computación e Industrias, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule (UCM), Av. San Miguel 3605, Talca 3460000, Chile
- Correspondence: ; Tel.: +56-2-71203-438
| | - Andrea Mahn
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O’Higgins 3363, Estación Central 9160000, Chile; (A.S.); (A.M.)
| | - Orlando Acosta
- Gestionare Consultores, Carlos Antunez 2025 of. 608, Providencia 7500000, Chile;
| |
Collapse
|
10
|
Insight into the feed/permeate flow velocity on the trade-off of water flux and scaling resistance of superhydrophobic and welding-pore fibrous membrane in membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118883] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
A Numerical Simulation of Membrane Distillation Treatment of Mine Drainage by Computational Fluid Dynamics. WATER 2020. [DOI: 10.3390/w12123403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Membrane distillation (MD) is a promising technology to treat mine water. This work aims to investigate the change in mass and heat transfer in reverse osmosis mine water treatment by vacuum membrane distillation (VMD). A 3D computational fluid dynamics (CFD) model was carried out using COMSOL Multiphysics and verified by the experimental results. Then, response Surface Methodology (RSM) was used to explore the effects of various parameters on the permeate flux and heat transfer efficiency. In terms of the influence degree on the permeation flux, the vacuum pressure > feed temperature > membrane length > feed temperature membrane length, and the membrane length has a negative correlation with the membrane flux. Increasing the feed temperature can also increase the convective heat transfer at the feed side, which will affect the heat transfer efficiency. Furthermore, the feed temperature also has a critical effect on the temperature polarization phenomenon. The temperature polarization becomes more notable at high temperatures.
Collapse
|