1
|
Zou S, Lian Q, Ni M, Zhou D, Liu M, Zhang X, Chen G, Yuan J. Spatiotemporal assembly and functional composition of planktonic microeukaryotic communities along productivity gradients in a subtropical lake. Front Microbiol 2024; 15:1351772. [PMID: 38440145 PMCID: PMC10909917 DOI: 10.3389/fmicb.2024.1351772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/16/2024] [Indexed: 03/06/2024] Open
Abstract
Microeukaryotes play crucial roles in the microbial loop of freshwater ecosystems, functioning both as primary producers and bacterivorous consumers. However, understanding the assembly of microeukaryotic communities and their functional composition in freshwater lake ecosystems across diverse environmental gradients remains limited. Here, we utilized amplicon sequencing of 18S rRNA gene and multivariate statistical analyses to examine the spatiotemporal and biogeographical patterns of microeukaryotes in water columns (at depths of 0.5, 5, and 10 m) within a subtropical lake in eastern China, covering a 40 km distance during spring and autumn of 2022. Our results revealed that complex and diverse microeukaryotic communities were dominated by Chlorophyta (mainly Chlorophyceae), Fungi, Alveolata, Stramenopiles, and Cryptophyta lineages. Species richness was higher in autumn than in spring, forming significant hump-shaped relationships with chlorophyll a concentration (Chl-a, an indicator of phytoplankton biomass). Microeukaryotic communities exhibited significant seasonality and distance-decay patterns. By contrast, the effect of vertical depth was negligible. Stochastic processes mainly influenced the assembly of microeukaryotic communities, explaining 63, 67, and 55% of community variation for spring, autumn, and both seasons combined, respectively. Trait-based functional analysis revealed the prevalence of heterotrophic and phototrophic microeukaryotic plankton with a trade-off along N:P ratio, Chl-a, and dissolved oxygen (DO) gradients. Similarly, the mixotrophic proportions were significantly and positively correlated with Chl-a and DO concentrations. Overall, our findings may provide useful insights into the assembly patterns of microeukaryotes in lake ecosystem and how their functions respond to environmental changes.
Collapse
Affiliation(s)
- Songbao Zou
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Huzhou, Zhejiang, China
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Huzhou, Zhejiang, China
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Qingping Lian
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Huzhou, Zhejiang, China
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Huzhou, Zhejiang, China
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Meng Ni
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Huzhou, Zhejiang, China
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Huzhou, Zhejiang, China
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Dan Zhou
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Huzhou, Zhejiang, China
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Huzhou, Zhejiang, China
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Mei Liu
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Huzhou, Zhejiang, China
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Huzhou, Zhejiang, China
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Xin Zhang
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Huzhou, Zhejiang, China
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Huzhou, Zhejiang, China
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Guangmei Chen
- Zhejiang Fenghe Fishery Co., Ltd., Lishui, Zhejiang, China
| | - Julin Yuan
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Huzhou, Zhejiang, China
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Huzhou, Zhejiang, China
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| |
Collapse
|
2
|
Gao H, Chen J, Wang C, Wang P, Wang R, Hu Y, Pan Y. Diversity and interaction of bacterial and microeukaryotic communities in sediments planted with different submerged macrophytes: Responses to decabromodiphenyl ether. CHEMOSPHERE 2023; 322:138186. [PMID: 36806803 DOI: 10.1016/j.chemosphere.2023.138186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Although various persistent organic pollutants (POPs) can affect microbial communities and functions in aquatic ecosystems, little is known about how bacteria and microeukaryotes respond to the POPs in sediments planted with different submerged macrophytes. Here, a 60-day microcosm experiment was carried out to investigate the changes in the diversity and interaction of bacterial and microeukaryotic communities in sediments collected from Taihu lake, either with decabromodiphenyl ether (BDE-209) own or combined with two common submerged macrophyte species (Vallisneria natans and Hydrilla verticillate). The results showed that BDE-209 significantly decreased the bacterial α-diversity but increased the microeukaryotic one. In sediments planted with submerged macrophytes, the negative effect of BDE-209 on bacterial diversity was weakened, and its positive effect on microeukaryotic one was strengthened. Co-occurrence network analysis revealed that the negative relationship was dominant in bacterial and microeukaryotic communities, while the cooperative relationship between microbial species was increased in planted sediments. Among nine keystone species, one belonging to bacterial family Thermoanaerobaculaceae was enriched by BDE-209, and others were inhibited. Notably, such inhibition was weakened, and the stimulation was enhanced in planted sediments. Together, these observations indicate that the responses of bacteria and microeukaryotes to BDE-209 are different, and their communities under BDE-209 contamination are more stable in sediments planted with submerged macrophytes. Moreover, the effects of plant species on the microbial responses to BDE-209 need to be explored by more specific field studies in the future.
Collapse
Affiliation(s)
- Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Rong Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Yu Hu
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Ying Pan
- School of Ecology, Sun Yat-sen University, Shenzhen, 518000, China
| |
Collapse
|
3
|
Ren Z, Ma K, Jia X, Wang Q, Zhang C, Li X. Community Assembly and Co-Occurrence Patterns of Microeukaryotes in Thermokarst Lakes of the Yellow River Source Area. Microorganisms 2022; 10:481. [PMID: 35208934 PMCID: PMC8877526 DOI: 10.3390/microorganisms10020481] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/02/2023] Open
Abstract
Thermokarst lakes are important aquatic ecosystems in cold regions, experiencing several changes due to global warming. However, the fundamental assembly mechanisms of microeukaryotic communities in thermokarst lakes are unknown. In this study, we examined the assembly processes and co-occurrence networks of microeukaryotic communities in sediment and water of thermokarst lakes in the Yellow River Source Area. Sediment microeukaryotic communities had a significantly lower α-diversity but higher β-diversity than water microeukaryotic communities. pH, sediment organic carbon, and total phosphorus significantly affected taxonomic and phylogenetic diversity of sediment communities, while conductivity was a significant driver for water communities. Both sediment and water microeukaryotic communities were strongly governed by dispersal limitation. However, deterministic processes, especially homogenous selection, were more relevant in structuring microeukaryotic communities in water than those in sediment. Changes in total nitrogen and phosphorus in sediment could contribute to shift its microeukaryotic communities from homogeneous selection to stochastic processes. Co-occurrence networks showed that water microeukaryotic communities are more complex and interconnected but have lower modularity than sediment microeukaryotic communities. The water microeukaryotic network had more modules than the sediment microeukaryotic network. These modules were dominated by different taxonomic groups and associated to different environmental variables.
Collapse
Affiliation(s)
- Ze Ren
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; (Q.W.); (C.Z.); (X.L.)
- School of Environment, Beijing Normal University, Beijing 100875, China;
| | - Kang Ma
- School of Environment, Beijing Normal University, Beijing 100875, China;
| | - Xuan Jia
- College of Education for the Future, Beijing Normal University, Zhuhai 519087, China;
| | - Qing Wang
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; (Q.W.); (C.Z.); (X.L.)
- School of Environment, Beijing Normal University, Beijing 100875, China;
| | - Cheng Zhang
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; (Q.W.); (C.Z.); (X.L.)
- School of Engineering Technology, Beijing Normal University, Zhuhai 519087, China
| | - Xia Li
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; (Q.W.); (C.Z.); (X.L.)
- School of Environment, Beijing Normal University, Beijing 100875, China;
| |
Collapse
|
4
|
Arimoro FO, Meme FK, Keke UN. Effects of effluent discharges from a cement factory on the ecology of macroinvertebrates in an Afrotropical river. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53444-53457. [PMID: 34031823 DOI: 10.1007/s11356-021-14514-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Cement factory waste water impacts on the ecology of macroinvertebrate assemblages of the Oinyi River, North Central area of Nigeria, were evaluated bi-monthly for 1 year as part of a study to understand the effects of pollution processes in the lotic system that may initiate the development of policy and improved regulation. Three sampling stations, each 100 m long, were selected along 11-km stretch of the river. Station 1, located upstream of the discharge point from the cement factory plant; station 2, immediately downstream of the effluent discharge point; and station 3, 4 km downstream, were sampled. The waste water from the cement effluent factory impacted negatively on the water chemistry by elevating the levels of some heavy metals (Mn, Zn, Cu, and Ni), and other physicochemical parameters such as turbidity, chemical oxygen demand (COD), conductivity, and total suspended solid. A total of 81 macroinvertebrate taxa combined were recorded from the river. The community structure, diversity, and abundance depicted distinct variation between the effluent-impacted site, and the upstream station as the most sensitive macroinvertebrate taxa such as Neoperla and Cheumatopsyche species was completely missing from the effluent-impacted site. The preponderance of some dipteran taxa (Tanypus sp., Eristalis tenax, Simulum sp., Empis sp., and Atherix sp.) and drastic reduction in the Ephemeroptera-Plecoptera-Trichoptera (EPT) organisms in the impacted station is an indication that the chemical components of the cement effluent waste water were lethal to some aquatic forms. Extrapolations from canonical correspondence analysis (CCA) results revealed that turbidity, conductivity, BOD, orthophosphate-phosphorus, and heavy metals were strongly associated with the impacted station. Generally, the community structure of station 1 was more diverse with more sensitive taxa, different from those of stations 2 and 3, which were prone to intense human activities. The need for careful consideration of the water quality and indicator organisms is important for restoration of this river.
Collapse
Affiliation(s)
- Francis O Arimoro
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, P.M.B, Minna, 65, Nigeria.
| | - Francis K Meme
- Department of Animal and Environmental Biology, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Unique N Keke
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, P.M.B, Minna, 65, Nigeria
| |
Collapse
|