1
|
Chwastowski J, Wójcik K, Kołoczek H, Oszczęda Z, Khachatryan K, Tomasik P. Effect of water treatment with low-temperature and low-pressure glow plasma of low frequency on the growth of selected microorganisms. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2169708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jarosław Chwastowski
- Institute of Chemistry and Inorganic Technology, Krakow University of Technology, Krakow, Poland
| | - Katarzyna Wójcik
- Central Laboratory for Diagnostics of Tuberculosis Mycobacterium, John Paul the IInd, Hospital, Krakow, Poland
| | - Henryk Kołoczek
- Institute of Chemistry and Inorganic Technology, Krakow University of Technology, Krakow, Poland
| | | | - Karen Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Krakow, Poland
| | - Piotr Tomasik
- Nantes Nanotechnological Systems, Bolesławiec, Poland
| |
Collapse
|
2
|
Małajowicz J, Khachatryan K, Oszczęda Z, Karpiński P, Fabiszewska A, Zieniuk B, Krysowaty K. The Effect of Plasma-Treated Water on Microbial Growth and Biosynthesis of Gamma-Decalactones by Yarrowia lipolytica Yeast. Int J Mol Sci 2023; 24:15204. [PMID: 37894885 PMCID: PMC10607521 DOI: 10.3390/ijms242015204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
In recent years, the production of plasma-treated water (PTW) by low-temperature low-pressure glow plasma (LPGP) has been increasingly gaining in popularity. LPGP-treated water changes its physical and physiochemical properties compared to standard distilled water. In this study, a non-conventional lipolytic yeast species Yarrowia lipolytica was cultivated in culture media based on Nantes plasma water with heightened singlet oxygen content (Nantes PW) or in water treated with low-temperature, low-pressure glow plasma while in contact with air (PWTA) or nitrogen (PWTN). The research aimed to assess the influence of culture conditions on castor oil biotransformation to gamma-decalactone (GDL) and other secondary metabolites in media based on nanowater. The Nantes plasma water-based medium attained the highest concentration of gamma-decalactone (4.81 ± 0.51 g/L at 144 h of culture), maximum biomass concentration and biomass yield from the substrate. The amplified activity of lipases in the nanowater-based medium, in comparison to the control medium, is encouraging from the perspective of GDL biosynthesis, relying on the biotransformation of ricinoleic acid, which is the primary component of castor oil. Although lipid hydrolysis was enhanced, this step seemed not crucial for GDL concentration. Interestingly, the study validates the significance of oxygen in β-oxidation enzymes and its role in the bioconversion of ricinoleic acid to GDL and other lactones. Specifically, media with higher oxygen content (WPTA) and Nantes plasma water resulted in remarkably high concentrations of four lactones: gamma-decalactone, 3-hydroxy-gamma-decalactone, dec-2-en-4-olide and dec-3-en-4-olide.
Collapse
Affiliation(s)
- Jolanta Małajowicz
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska Street 159C, 02-776 Warsaw, Poland; (A.F.); (B.Z.)
| | - Karen Khachatryan
- Laboratory of Nanomaterials and Nanotechnology, Faculty of Food Technology, University of Agriculture in Cracow, Balicka Street 122, 30-149 Cracow, Poland;
| | - Zdzisław Oszczęda
- Nantes Nanotechnological Systems, Dolne Młyny Street 21, 59-700 Bolesławiec, Poland;
| | - Piotr Karpiński
- Faculty of Computer Science and Technology, Lomza State University of Applied Sciences, Akademicka Street 1, 18-400 Łomża, Poland;
| | - Agata Fabiszewska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska Street 159C, 02-776 Warsaw, Poland; (A.F.); (B.Z.)
| | - Bartłomiej Zieniuk
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska Street 159C, 02-776 Warsaw, Poland; (A.F.); (B.Z.)
| | - Konrad Krysowaty
- Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| |
Collapse
|
3
|
Janik M, Khachatryan K, Khachatryan G, Krystyjan M, Oszczęda Z. Comparison of Physicochemical Properties of Silver and Gold Nanocomposites Based on Potato Starch in Distilled and Cold Plasma-Treated Water. Int J Mol Sci 2023; 24:ijms24032200. [PMID: 36768519 PMCID: PMC9916708 DOI: 10.3390/ijms24032200] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
Nanometal-containing biocomposites find wide use in many industries and fields of science. The physicochemical properties of these materials depend on the character of the polymer, the size and shape of the metallic nanoparticles, and the interactions between the biopolymer and the nanoparticles. The aim of the work was to synthesise and study the effect of plasma-treated water on the properties of the obtained metallic nanoparticles as well as the physicochemical and functional properties of nanocomposites based on potato starch. The metallic nanoparticles were synthesised within a starch paste made in distilled water and in distilled water exposed to low-temperature, low-pressure plasma. The materials produced were characterised in terms of their physicochemical properties. Studies have shown that gold and silver nanoparticles were successfully obtained in a matrix of potato starch in distilled water and plasma water. SEM (Scanning Electron Microscopy) images and UV-Vis spectra confirmed the presence of nanosilver and nanosilver in the obtained composites. On the basis of microscopic images, the size of nanoparticles was estimated in the range from 5 to 20 nm for nanoAg and from 15 to 40 nm for nanoAu. The analysis of FTIR-ATR spectra showed that the type of water used and the synthesis of gold and silver nanoparticles did not lead to changes in the chemical structure of potato starch. DLS analysis showed that the nanoAg obtained in the plasma water-based starch matrix were smaller than the Ag particles obtained using distilled water. Colour analysis showed that the nanocomposites without nanometals were colourless, while those containing nanoAg were yellow, while those with nanoAu were dark purple. This work shows the possibility of using plasma water in the synthesis of nanometals using potato starch, which is a very promising polysaccharide in terms of many potential applications.
Collapse
Affiliation(s)
- Magdalena Janik
- Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
| | - Karen Khachatryan
- Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
- Correspondence: ; Tel.: +48-12-662-48-46
| | - Gohar Khachatryan
- Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
| | - Magdalena Krystyjan
- Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
| | - Zdzisław Oszczęda
- Nantes Nanotechnological Systems, Dolnych Młynów Street 24, 59-700 Bolesławiec, Poland
| |
Collapse
|
4
|
The Improvement of Reserve Polysaccharide Glycogen Level and Other Quality Parameters of S. cerevisiae Brewing Dry Yeasts by Their Rehydration in Water, Treated with Low-Temperature, Low-Pressure Glow Plasma (LPGP). APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The increasing popularity of active dry yeast arises from its properties, such as ease of storage, and simplicity of preparation and dosing. Herein, we elaborate on the effect of plasma-treated water (PTW) under air atmosphere (PTWAir) and nitrogen (PTWN) on the improvement of the reserve polysaccharide glycogen level and other quality parameters of S. cerevisiae brewing dry yeast in comparison with the non plasma-treated water (CW). For this purpose, strains of top-fermenting (S. cerevisiae T58 (poor quality), S33 (poor quality)) and bottom-fermenting (S. pastorianus W30/70 (poor quality)) yeast stored one year after opening and S. cerevisiae US-05 (fresh strain) were selected to examine the influence of PTWs toward the quality parameters of yeast biomass after the rehydration and fermentation process. The obtained results showed that in the case of poor quality yeast strains, PTWAir increased glycogen content after the rehydration and fermentation process, which was a favorable trend. A similar increase was observed for the trehalose content. Results showed that PTWN significantly reduced the number of yeast cells in ale strains and the viability of all analyzed samples. The lowest viability was observed in Sc S33 strain for PTWAir (41.99%), PTWN (18.6%) and CW (22.86%). PTWAir did not contribute to reducing the analyzed parameter; in particular, the results of Sc T58 yeast strain’s viability are shown: PTWAir (58.83%), PTWN (32.28%) and CW (43.56%). The obtained results suggest that rehydration by PTWN of dry yeast with a weakened condition is not recommended for both qualitative and cost-related reasons, while PTWAir significantly contributed to the improvement of some yeast parameters after rehydration and fermentation (higher glycogen and trehalose content).
Collapse
|
5
|
Specific Way of Controlling Composition of Cannabinoids and Essential Oil from Cannabis sativa var. Finola. WATER 2022. [DOI: 10.3390/w14050688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recently, a series of papers reported preparation and physicochemical properties of various kinds of water treated in contact with various gases with low-temperature, low-pressure glow plasma of low frequency (LPGP). Consecutive papers presented results of watering numerous herbal plants with those kinds of water in planting of numerous herbal plants. Always, the watering influenced the yield and quality of the crops and considerably changed the composition of the essential oils extracted from the watered plants. This paper provides the effects of watering of Cannabis sativum var. Finola with water LPGP-treated either in the air (LPGPA), under molecular nitrogen (LPGPN) or carbon dioxide (LPGPC). Cannabis sativa, particularly its botanic class called hemp, attracts great attention for its numerous applications. They include rope, textiles, clothing, shoes, food, paper, bioplastics, insulation, biofuel and industrial fibre. The watering was maintained for 12 weeks. Regardless of the kind of the used plasma-treated water, a considerable increase in the plant crop yield was noted for first 7 weeks. Further cultivation resulted in a minute increase in the yield. The watering with LPGPC offered the highest crop yield, followed by nontreated water, LPGPN and LPGPA. The yield of essential oil per 1 g of plant was independent of the used kind of plasma-treated water. Watering Finola with LPGPA resulted in a decrease in the level of cannabidivarin (CBD V) and considerable increase in the deal of Δ 9-tetrahydrocannabinol (Δ9-THC). The levels of the remaining components of the essential oil slightly decreased with respect to that in the control sample. Almost identical trends in the influence of watering upon the composition of essential oil were observed in the case of LPGPN. However, an unusually strong decrease in the level of CBD V accompanied by a very high increase in the level of Δ9-THC could be noted. The performed study provided strong evidence that watering seeds and plants of Finola with various kinds of the LPGP-treated water could modulate and even tailor the crop yield, functional properties of the plant and essential oils extracted from it. The composition of the essential oil isolated from the plant watered with LPGPN suggests its application as a substitute of medical marijuana (medical cannabis).
Collapse
|
6
|
Dini I, Laneri S. Spices, Condiments, Extra Virgin Olive Oil and Aromas as Not Only Flavorings, but Precious Allies for Our Wellbeing. Antioxidants (Basel) 2021; 10:868. [PMID: 34071441 PMCID: PMC8230008 DOI: 10.3390/antiox10060868] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Spices, condiments and extra virgin olive oil (EVOO) are crucial components of human history and nutrition. They are substances added to foods to improve flavor and taste. Many of them are used not only to flavor foods, but also in traditional medicine and cosmetics. They have antioxidant, antiviral, antibiotic, anticoagulant and antiinflammatory properties and exciting potential for preventing chronic degenerative diseases such as cardiomyopathy and cancer when used in the daily diet. Research and development in this particular field are deeply rooted as the consumer inclination towards natural products is significant. It is essential to let consumers know the beneficial effects of the daily consumption of spices, condiments and extra virgin olive oil so that they can choose them based on effects proven by scientific works and not by the mere illusion that plant products are suitable only because they are natural and not chemicals. The study begins with the definition of spices, condiments and extra virgin olive oil. It continues by describing the pathologies that can be prevented with a spicy diet and it concludes by considering the molecules responsible for the beneficial effects on human health (phytochemical) and their eventual transformation when cooked.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | | |
Collapse
|
7
|
Effect of Watering of Selected Seasoning Herbs with Water Treated with Low-Temperature, Low-Pressure Glow Plasma of Low Frequency. WATER 2020. [DOI: 10.3390/w12123526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Plantations of lovage, marjoram, rosemary and thyme were watered with water treated with low-temperature, low-pressure glow plasma of low frequency. Such watering appeared beneficial to the extent dependent on particular herb. In terms of crop yield and quality, water treated with glow plasma performed best in the case of rosemary, and the worst results were observed for thyme. When yield of essential oils are taken into account, only in the case of lovage did such watering appear beneficial, while in the remaining cases it had no effect. However, such watering considerably changed the composition of essential oils. These changes were specific for a given herb and involved the quantity of particular components of the oils. Only in the essential oil from lovage did γ-terpinene appear as its novel component.
Collapse
|