1
|
Boening-Ulman KM, Mikelonis AM, Heckman JL, Calfee MW, Ratliff K, Youn S, Smith JS, Mitchell CE, Hunt WF, Winston RJ. The potential to manage releases of Bacillus anthracis using bioretention and a high flow media filter: Results of simulated runoff testing with tracer spores Bacillus globigii. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120286. [PMID: 38354613 DOI: 10.1016/j.jenvman.2024.120286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024]
Abstract
The threat of bioterrorism has spurred research on the decontamination and containment of different agents. Anthrax [causative agent Bacillus anthracis (Ba)] is a disease that can lead to severe infections within human and animals, particularly when inhaled. This research investigated the use of spore-contaminated simulated runoff events into stormwater control measures (SCMs), which are designed to retain and improve the quality of runoff and may have the potential to filter and contain the spores. In this study, the effectiveness of a bioretention cell (BRC) and high flow media filter (HFMF) in Huron, Ohio, were evaluated for removal of Bacillus globigii (Bg) spores (a harmless cognate of Ba). Three 4-8 mm simulated runoff events were created for each SCM using a fire hydrant and Bg spores were injected into the runoff upstream of the SCM inlets. The BRC significantly (p < 0.001) outperformed the HFMF in reducing Bg concentrations and loads, with an average load reduction of 1.9 log (∼99% reduction) compared to 0.4 (∼60% reduction), respectively. A probable critical design factor leading to these differences was the infiltration rate of the media and subsequent retention time within the filters, which was supported by similar disparities in suspended solids reductions. Differences in spore removal may also have been due to particle size distribution of the HFMF, which was more gravelly than the bioretention cell. At 3 and 6 months after the-simulated runoff tests, soil samples taken from both SCMs, yielding detectable Bg spores within the top 15 cm of media, with increased spore concentrations where ponding occurred for longer durations during the tests. This suggests that forebays and areas near inlets may be hotspots for spore cleanup in a real-world bioterrorism incident.
Collapse
Affiliation(s)
- Kathryn M Boening-Ulman
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Dr., Columbus, OH, 43210, USA.
| | - Anne M Mikelonis
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - J Lee Heckman
- APTIM Government Solutions, 1600 Gest St., U.S. Environmental Protection Agency Test and Evaluation Facility, Cincinnati, OH, 45204, USA
| | - M Worth Calfee
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - Katherine Ratliff
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - Sungmin Youn
- Department of Civil Engineering, Marshall University, Huntington, WV, 25755, USA
| | - Joseph S Smith
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Dr., Columbus, OH, 43210, USA
| | - Caleb E Mitchell
- Department of Biological and Agricultural Engineering, North Carolina State University, 3100 Faucette Dr., Raleigh, NC, 27695, USA
| | - William F Hunt
- Department of Biological and Agricultural Engineering, North Carolina State University, 3100 Faucette Dr., Raleigh, NC, 27695, USA
| | - Ryan J Winston
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Dr., Columbus, OH, 43210, USA; Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, 2070 Neil Ave., Columbus, OH, 43210, USA
| |
Collapse
|
2
|
Xu H, Randall M, Fryd O. Urban stormwater management at the meso-level: A review of trends, challenges and approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117255. [PMID: 36738635 DOI: 10.1016/j.jenvman.2023.117255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Cities worldwide are facing a significant threat of stormwater hazards caused by the increase in extreme downpours and urbanization. Meso-level urban stormwater management focuses on alleviating the detrimental impacts of urban flooding and enhancing water resource utilization at the block or community scale, typically through 1) specific policies and management rules; 2) catchment-scale scenario simulation, optimization and evaluation; 3) the group of stormwater control measures implementation. It may effectively coordinate macro-level urban stormwater management planning and micro-level distributed stormwater control facilities. This study conducts a review of Urban Stormwater Management at Meso-level (USM-M) with a view to research publication trends, citation analysis, geographic spread and subject category, as well as content analysis, including temporal progression and research gaps. The Web of Science database and CiteSpace are used for the bibliometric analysis of 66 articles from 2006 to 2021. The results show that the number of USM-M topic articles generally has an upward trend over the years. Whilst the United States and China are leading research on this topic, the European countries have diverse local research and dense cooperation. Research foci have generally shifted from theoretical frameworks to multi-element subdivided topics and specific technical roadmaps. Moreover, the spatial layout optimization and multi-functional integration are, or will be, potential research directions in terms of enhancing stormwater utilization and co-benefits of USM-M. This systematic review concludes trends, challenges and potential approaches of USM-M, and aims to provide recommendations for researchers and policymakers on the development of a more advanced and comprehensive USM-M.
Collapse
Affiliation(s)
- Hanwen Xu
- Department of Geosciences and Natural Resources Management, University of Copenhagen, Frederiksberg, Denmark.
| | - Mark Randall
- Department of Geosciences and Natural Resources Management, University of Copenhagen, Frederiksberg, Denmark
| | - Ole Fryd
- Department of Geosciences and Natural Resources Management, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
3
|
Calle E, Martínez D, Buttiglieri G, Corominas L, Farreras M, Saló-Grau J, Vilà P, Pueyo-Ros J, Comas J. Optimal design of water reuse networks in cities through decision support tool development and testing. NPJ CLEAN WATER 2023; 6:23. [PMID: 36945314 PMCID: PMC10020772 DOI: 10.1038/s41545-023-00222-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Water scarcity and droughts are an increasing issue in many parts of the world. In the context of urban water systems, the transition to circularity may imply wastewater treatment and reuse. Planning and assessment of water reuse projects require decision-makers evaluating the cost and benefits of alternative scenarios. Manual or semi-automatic approaches are still common practice for planning both drinking and reclaimed water distribution networks. This work illustrates a decision support tool that, based on open data sources and graph theory coupled to greedy optimization algorithms, is able to automatically compute the optimal reclaimed water network for a given scenario. The tool provides not only the maximum amount of served reclaimed water per unit of invested cost, but also the length and diameters of the pipes required, the location and size of storage tanks, the population served, and the construction costs, i.e., everything under the same architecture. The usefulness of the tool is illustrated in two different but complementary cities in terms of size, density, and topography. The construction cost of the optimal water reclaimed network for a city of approximately 100,000 inhabitants is estimated to be in the range of €0.17-0.22/m3 (for a payback period of 30 years).
Collapse
Affiliation(s)
- Eusebi Calle
- Institute of Informatics and Applications, University of Girona, Girona, Spain
| | - David Martínez
- Institute of Informatics and Applications, University of Girona, Girona, Spain
- Catalan Institute for Water Research (ICRA-CERCA), Emili Grahit 101, 17003 Girona, Spain
| | - Gianluigi Buttiglieri
- Catalan Institute for Water Research (ICRA-CERCA), Emili Grahit 101, 17003 Girona, Spain
- University of Girona, Girona, Spain
| | - Lluís Corominas
- Catalan Institute for Water Research (ICRA-CERCA), Emili Grahit 101, 17003 Girona, Spain
- University of Girona, Girona, Spain
| | - Miquel Farreras
- Institute of Informatics and Applications, University of Girona, Girona, Spain
| | - Joan Saló-Grau
- Institute of Informatics and Applications, University of Girona, Girona, Spain
- Catalan Institute for Water Research (ICRA-CERCA), Emili Grahit 101, 17003 Girona, Spain
| | - Pere Vilà
- Institute of Informatics and Applications, University of Girona, Girona, Spain
| | - Josep Pueyo-Ros
- Catalan Institute for Water Research (ICRA-CERCA), Emili Grahit 101, 17003 Girona, Spain
- University of Girona, Girona, Spain
| | - Joaquim Comas
- Catalan Institute for Water Research (ICRA-CERCA), Emili Grahit 101, 17003 Girona, Spain
- LEQUIA, Institute of Environment, University of Girona, E-17071 Girona, Spain
| |
Collapse
|
4
|
Integrated Planning and Implementation of a Blue-Green Architecture Project by Applying a Design-Build Teaching Approach. LAND 2022. [DOI: 10.3390/land11050762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Blue-green architecture (BGA) describes buildings and open spaces that combine nature-based and technical systems of vegetation and urban water management. This creates positive effects on the urban climate, public health, biodiversity, and water balance. In this study, a design strategy for BGA is applied and evaluated on a practical project. The project consists of an interdisciplinary course in which students of architecture and landscape architecture designed and implemented a BGA for a school garden in Munich, Germany. The students worked in an interdisciplinary planning team in which they took on different roles and responsibilities (blue/green/integration). As a result, the design was put into practice by their own hands and a nature-based system was built. The greywater from the school garden is now treated in a constructed wetland and, in combination with rainwater, feeds into a redesigned pond. Biodiversity was increased and a contribution to the environmental education of the pupils was made. The students demonstrated high learning success. Finally, the design strategy for BGA was positively evaluated using a design-based research approach and additional points were added for future applications.
Collapse
|
5
|
Rentachintala LRNP, Reddy MGM, Mohapatra PK. Urban stormwater management for sustainable and resilient measures and practices: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:1120-1140. [PMID: 35228358 DOI: 10.2166/wst.2022.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stormwater drainage in urban areas has become a challenge due to the rapid and random growth of urban areas, removal of vegetation, reduction in the effectiveness of drainage infrastructure, and climate change. Sustainable Urban Drainage Systems (SUDS), Low Impact Development (LID), Best Management Practices (BMP), Water Sensitive Urban Design (WSUD) and the Sponge City Programme (SCP) are various aspects for urban stormwater management in a few parts of the world. Urban hydrology plays a vital role in the urban stormwater management system. However, optimal results can only be possible when the combined effect of climate change, land use patterns, reuse, treatment, ecology, and societal aspects are considered. There is a need to provide sustainable and resilient urban drainage systems to manage stormwater more efficiently. The present review has thoroughly discussed various features related to urban stormwater management, highlighted key drivers, identified knowledge gaps in each of the measures and/or practices, recommended future research needs of urban stormwater management to become sustainable and resilient. Integrated modelling approaches considering various key drivers including reuse and real time governance enables stormwater management to be sustainable and resilient in urban environments.
Collapse
Affiliation(s)
| | - M G Muni Reddy
- Department of Civil Engineering, College of Engineering(A), Andhra University, Visakhapatnam 530003, Andhra Pradesh, India E-mail:
| | | |
Collapse
|
6
|
Assessment of Blue and Green Infrastructure Solutions in Shaping Urban Public Spaces—Spatial and Functional, Environmental, and Social Aspects. SUSTAINABILITY 2021. [DOI: 10.3390/su131911041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Blue and Green Infrastructure (BGI) provide one of the key Nature Based Solution (NBS) approaches for sustainable stormwater management in cities, in conjunction with extending the scope of Ecosystem Services (ES). In both the process of planning and designing highly urbanized areas, the implementation of BGI is important for the improvement of living conditions and counteracting the negative effects of climate change. Based on the literature review, 19 BGI solutions were identified and then valorized in relation to the following three key aspects: spatial and functional, environmental, and social. The results of the assessment were derived using the scoring method and allowed for the identification of BGI solutions with a high, medium or low value for shaping sustainable urban public spaces. Using the potential of analyzed BGI solutions to improve the functioning and attractiveness of urban areas requires a comprehensive approach. Conscious planning and designing should use the knowledge presented to make the implementation of BGI solutions as effective as possible in relation to the above-mentioned aspects of shaping urban public spaces.
Collapse
|