1
|
Zhao Q, Wei C, Dou J, Sun Y, Zeng Q, Bao Z. Molecular and Physiological Responses of Litopenaeus vannamei to Nitrogen and Phosphorus Stress. Antioxidants (Basel) 2025; 14:194. [PMID: 40002380 PMCID: PMC11851905 DOI: 10.3390/antiox14020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Environmental stressors such as nitrogen and phosphorus play a critical role in regulating the growth and physiological functions of Litopenaeus vannamei, a key species in aquaculture. This study investigates the effects of nitrogen and phosphorus stress on shrimp growth, oxidative stress, tissue damage, and molecular mechanisms. Exposure to increasing concentrations of nitrogen and phosphorus significantly reduced growth rates. Oxidative stress markers, including superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (T-AOC), and malondialdehyde (MDA), indicated heightened oxidative damage under both stress conditions, with nitrogen stress causing more severe responses than phosphorus stress. Histopathological analysis revealed substantial damage to the gills and hepatopancreas, organs essential for respiration and metabolism. Transcriptomic analysis identified differentially expressed genes (DEGs) enriched in apoptosis, lysosome, sphingolipid metabolism, and phagosome pathways, suggesting shared molecular responses to nitrogen and phosphorus stress. The results demonstrate that L. vannamei initiates oxidative and immune responses to cope with environmental stressors, but the adaptive capacity remains limited. These findings provide a foundation for understanding the stress tolerance mechanisms in shrimp and inform future strategies for breeding high-resistance strains in aquaculture.
Collapse
Affiliation(s)
- Qianqian Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China; (Q.Z.); (C.W.)
| | - Cun Wei
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China; (Q.Z.); (C.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Hainan Seed Industry Laboratory, Sanya 572025, China
| | - Jiangling Dou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China; (Q.Z.); (C.W.)
| | - Yue Sun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China; (Q.Z.); (C.W.)
- Hainan Seed Industry Laboratory, Sanya 572025, China
| | - Qifan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China; (Q.Z.); (C.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Hainan Seed Industry Laboratory, Sanya 572025, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan 266100/572025, China; (Q.Z.); (C.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Hainan Seed Industry Laboratory, Sanya 572025, China
- Hebei Xinhai Aquatic Biotechnology Co., Ltd., Cangzhou 061101, China
| |
Collapse
|
2
|
Zhang T, Xu D, Zhou Y, Ma X, Wen H. Acute ammonia stress affects the immune response, oxidative stress, ammonia transport and detoxication in the hepatopancreas of freshwater mollusk Solenaia oleivora. Toxicol Appl Pharmacol 2024; 493:117138. [PMID: 39481765 DOI: 10.1016/j.taap.2024.117138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/08/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Ammonia is a common and major pollutant in aquatic systems. Excessive ammonia has toxic effects on hepatopancreas in aquatic animals. In this study, we investigated the toxic effects of acute ammonia (concentration: 10 mg/L; test duration: 48 h) stress on the hepatopancreas of a freshwater mollusk, Solenaia oleivora. Transcriptome analysis identified 3355 differentially expressed genes (DEGs), including 1432 up-regulated and 1923 down-regulated genes. Many DEGs were associated with immune and stress responses, including heat shock proteins, pattern recognition receptors, and lysozyme. In addition, some DEGs were related to ammonia transport and detoxification, such as aquaporins, K+channel, V-ATPase, cytochrome p450, glutathione transferase, and glutamine synthetase. Physiological analysis showed that ammonia stress increased the activities of antioxidant enzymes (superoxide dismutase and catalase) and non-specific immune enzymes (acid phosphatase) and the levels of liver injury markers (malonaldehyde, aspartate aminotransferase, and alanine transaminase). TdT-mediated dUTP nick-end labeling assay revealed that ammonia stress induced apoptosis in the hepatopancreas. These results indicated the toxic effects of ammonia on hepatopancreas on the immune response, oxidative stress, ammonia transport and detoxification of S. oleivora. Our findings will accumulate data on the toxic effects of ammonia on the hepatopancreas of aquatic animals.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Dongpo Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yanfeng Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Xueyan Ma
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Haibo Wen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
3
|
Duan G, Chen X, Hou Y, Jiang T, Liu H, Yang J. Combined transcriptome and metabolome analysis reveals the mechanism of high nitrite tolerance in freshwater mussel Anodonta woodiana. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101359. [PMID: 39546928 DOI: 10.1016/j.cbd.2024.101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/18/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Nitrite contamination and stress on aquatic organisms are increasingly emphasized in freshwater ecosystems. Freshwater bivalves exhibit high tolerance to nitrite; however, the underlying mechanism is unknown. Accordingly, this study investigated the tolerance mechanism of the globally occurring freshwater bivalve Anodonta woodiana. A. woodiana were exposed to nominal concentrations of 0, 250, 500, 1000, 2000, and 4000 mg/L nitrite for 96 h to calculate the 96-h median lethal concentration (96-h LC50). A combined transcriptome and metabolome analysis of the hemolymph (the most vital component of the bivalve immune system) was performed after exposing A. woodiana to 300 mg/L nitrite (approximately half the 96-h LC50) for 96 h. The 96-h LC50 of nitrite in A. woodiana was 618.7 mg/L. Transcriptome analysis identified 5600 differentially expressed genes (DEGs) primarily related to ribosomes, lysosomes, DNA replication, and nucleotide excision repair. Metabolome analysis identified 216 differentially expressed metabolites (DEMs) primarily involved in biosynthesis of amino acids, 2-oxocarboxylic acid metabolism, protein digestion and absorption, aminoacyl-tRNA biosynthesis, nucleotide metabolism, ABC transporters, and valine, leucine and isoleucine degradation. Combined transcriptome and metabolome analysis revealed that DEGs and DEMs were primarily associated with nucleotide (purine and pyrimidine) and amino acid metabolism (including aminoacyl-tRNA biosynthesis, cysteine and methionine metabolism, arginine and proline metabolism, and valine, leucine and isoleucine degradation) as well as the immune system (necroptosis and glutathione metabolism). This study is the first to describe the high tolerance of A. woodiana to nitrite and elucidate the molecular mechanisms underlying high nitrite tolerance in mussels.
Collapse
Affiliation(s)
- Guochao Duan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Xiubao Chen
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Laboratory of Fishery Microchemistry, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Yiran Hou
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
| | - Tao Jiang
- Laboratory of Fishery Microchemistry, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hongbo Liu
- Laboratory of Fishery Microchemistry, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jian Yang
- Laboratory of Fishery Microchemistry, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
4
|
Guo Z, Chen Y, Du X, Li Y, Niu D. Ammonia-induced oxidative stress triggered apoptosis in the razor clam (Sinonovacula constricta). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22380-22394. [PMID: 38407712 DOI: 10.1007/s11356-024-32635-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
As one of the most significant contaminants and stressors in aquaculture systems, ammonia adversely jeopardizes the health of aquatic animals. Ammonia exposure affects the development, metabolism, and survival of shellfish. However, the responses of the innate immune and antioxidant systems and apoptosis in shellfish under ammonia stress have rarely been reported. In this study, razor clams (Sinonovacula constricta) were exposed to different concentrations of non-ion ammonia (0.25 mg/L, 2.5 mg/L) for 72 h and then placed in ammonia-free seawater for 72 h for recovery. The immune responses induced by ammonia stress on razor clams were investigated by antioxidant enzyme activities and degree of apoptosis in digestive gland and gill tissues at different time points. The results showed that exposure to a high concentration of ammonia greatly disrupted the antioxidant system of the razor clam by exacerbating the accumulation of reactive oxygen species ( O 2 - , H2O2) and disordering the activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase), and the level of activity remained at a significantly high level after recovering for 72 h (P < 0.05). In addition, there were significant differences (P < 0.05) in the expression of key genes (Caspase 7, Cyt-c, Bcl-2, and Bax) in the mitochondrial apoptotic pathway in the digestive glands and gills of razor clams as a result of ammonia stress and were unable to return to normal levels after 72 h of recovery. TUNEL staining indicated that apoptosis was more pronounced in gills, showing a dose and time-dependent pattern. As to the results, ammonia exposure leads to the activation of innate immunity in razor clams, disrupts the antioxidant system, and activates the mitochondrial pathway of apoptosis. This is important for comprehending the mechanism underlying the aquatic toxicity resulting from ammonia in shellfish.
Collapse
Affiliation(s)
- Ziqi Guo
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
| | - Yukuan Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Xinxin Du
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
| | - Yifeng Li
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Donghong Niu
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
- College of Fisheries and Life Science, Shanghai Ocean University, 999 Hucheng Huan Road, Pudong New Area, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
5
|
Zhang T, Zhou Y, Wen H, Ma X, Xu D. Integrated analysis of physiological, transcriptome, and metabolome analyses of the gills in Solenaia oleivora under ammonia exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115949. [PMID: 38219616 DOI: 10.1016/j.ecoenv.2024.115949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Ammonia is a common toxicant in aquatic systems and one of the key factors affecting aquaculture. However, data on mollusks' toxic response and coping mechanisms to ammonia nitrogen, especially freshwater mollusks, are still lacking. In this study, we evaluated the tolerance of a freshwater mollusk Solenaia oleivora to ammonia and investigated its coping mechanisms by combining physiological, metabolic, and transcriptomic analyses in the gills. The acute toxicity test revealed that the LC50-96 h (temperature-20 ℃, pH-7.4) of ammonia in S. oleivora was 63.29 mg/L. The physiological and TUNEL results showed that although 10 mg/L ammonia exposure increased the activities of antioxidant, immune and ammonia detoxification-related enzymes, it still caused oxidative damage and cell apoptosis of gill tissues. A total of 97 differential metabolites (DMs) and 3431 differential expressed genes (DEGs) were identified after ammonia stress. Among them, most DMs and DEGs were involved in immune response, antioxidant, cell apoptosis, carbohydrate metabolism, amino acid metabolism, and lipid metabolism. The enhancement of glycolysis and lipid metabolisms may provide energy for immune response and ammonia detoxification. In addition, glutamine synthesis, alanine synthesis and urea cycle were involved in ammonia nitrogen detoxification in the gill tissue of S. oleivora. Our results indicate that ammonia leads to individual death in S. oleivora, as wells as oxidative damage, cell apoptosis, immune response, and metabolic changes of gill tissues. The findings will provide valuable information to assess the potential ecological risk of environmental ammonia to freshwater mollusks and theoretical guidance for the healthy aquaculture of S. oleivora.
Collapse
Affiliation(s)
- Ting Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yanfeng Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Haibo Wen
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Xueyan Ma
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Dongpo Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
6
|
Sarkheil M, Zahedi S, Safari O, Ahmadniaye Motlagh H. Effects of humic acid on nutrient removal efficiency of aquatic duckweed ( Lemna minor) and both growth performance, and hemato-biochemical parameters of Nile tilapia ( Oreochromis niloticus) cultured in water recirculating system. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:481-492. [PMID: 37626022 DOI: 10.1080/15226514.2023.2250459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
This study was carried out to evaluate the effects of humic acid (HA) on the nutrient removal efficiencies of aquatic duckweed plant (Lemna minor) from a water recirculating system used to culture Nile tilapia (Oreochromis niloticus) fish for 30 days. The HA was added to water at three concentrations of 0 (Control), 1.5, and 3 mg/L in triplicate. Water quality parameters, growth performance, and some hemato-biochemical parameters of the fish in variable HA concentrations were compared. The total ammonia nitrogen (TAN) and total phosphorous (TP) removal efficiency of L. minor increased with increasing the HA concentration from 0 mg/L to 3 mg/L (p < 0.05). The concentration of nitrate (NO3-) in the HA-3 mg/L was higher than that in the other groups on days 20 and 30 of the fish cultivation period (p < 0.05). The growth performance of fish improved in the HA-3 mg/L compared to the other groups. The addition of different concentrations of HA to water had no adverse effect on the hematological properties of the Nile tilapia. The plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) levels in the HA-0 mg/L and HA-1.5 mg/L groups were higher than in the HA-3 mg/L (p < 0.05). No significant differences in the plasma glucose and cholesterol levels were observed between the HA-groups (p > 0.05), while the triglyceride level increased in the HA-3 mg/L compared to the control (p < 0.05). These results indicated that adding HA to water could be an effective method to enhance the bioremediation performance of the aquatic duckweed plants as biofilter and thus improve water quality, subsequently, fish growth performance in RASs.
Collapse
Affiliation(s)
- Mehrdad Sarkheil
- Department of Fisheries, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saeed Zahedi
- Department of Fisheries, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Omid Safari
- Department of Fisheries, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamidreza Ahmadniaye Motlagh
- Department of Fisheries, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
7
|
Transcriptome sequencing reveals improved ammonia nitrogen tolerance in Zebra II strain of the Manila clam Ruditapes philippinarum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 44:101016. [PMID: 35985189 DOI: 10.1016/j.cbd.2022.101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/24/2022] [Accepted: 07/24/2022] [Indexed: 01/27/2023]
Abstract
In this research, we identified genes associated with ammonia nitrogen (TAN) stress response and resistance in juveniles of the Zebra II strain and a wild population of the Manila clam Ruditapes philippinarum. Both groups were subjected to a 96 h acute toxicity test using TAN concentrations of 17.617 ± 0.634 and 16.670 ± 0.7 mg/l, respectively. We then collected samples, conducted transcriptome sequencing and screened the sequences for differentially expressed genes (DEGs) related to TAN stress response. We identified 2908 and 2861 DEGs in the Zebra II and wild clam groups, respectively, and the two groups had 626 DEGs in common. The verified DEGs had less of a detoxification effect in the wild population than that in the Zebra II group. Gene Ontology database analysis showed that Zebra II juveniles were mainly enriched in protein phosphorylation, purine nucleoside binding, and kinase activity, whereas the wild population juveniles were primarily enriched in oxidases activity, organic acid metabolic processes, and extracellular regions. Kyoto Encyclopedia of Genes and Genomes pathway analysis mainly highlighted aminoacyl tRNA biosynthesis in Zebra II juveniles and sphingolipid metabolism, FOXO signaling, biosynthesis of aminoacyl tRNA, and other pathways in the wild population. These results show that the toxic effect of TAN on the Manila clam is related to a variety of pathways, which are mainly related to immune response, inflammatory response, metabolic pathways, and nerve conduction. This study provides basic data and theoretical reference for revealing the molecular regulation mechanism of the improved TAN tolerance of Zebra II strain as compared with the wild population of Ruditapes philippinarum.
Collapse
|
8
|
Dietary curcumin supplementation enhances intestinal immunity and gill protection in juvenile Greater amberjack (Seriola dumerili). Heliyon 2022; 8:e11887. [DOI: 10.1016/j.heliyon.2022.e11887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/09/2022] [Accepted: 11/17/2022] [Indexed: 11/26/2022] Open
|
9
|
Effects of Eugenol on Water Quality and the Metabolism and Antioxidant Capacity of Juvenile Greater Amberjack (Seriola dumerili) under Simulated Transport Conditions. Animals (Basel) 2022; 12:ani12202880. [PMID: 36290265 PMCID: PMC9598218 DOI: 10.3390/ani12202880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/04/2022] [Accepted: 10/16/2022] [Indexed: 11/17/2022] Open
Abstract
This study investigated the effects of added eugenol on water quality and the metabolism and antioxidant capacity of the liver and gills of the greater amberjack (Seriola dumerili) during simulated transport. The juvenile fish (10.34 ± 1.33 g) were transported in sealed plastic bags containing different eugenol concentrations at a density of 24.79 kg/m3 for 8 h. The different eugenol concentrations were divided into five groups: 0 μL/mL (control group), 0.0125 μL/mL, 0.025 μL/mL, 0.0375 μL/mL, and 0.05 μL/mL, with three replicates of each. The results showed that 0.05 μL/mL of eugenol could significantly increase dissolved oxygen, but 0.025 μL/mL–0.0375 μL/mL resulted in a significant decrease in dissolved oxygen and significant increases in NH4+-N and NO2−-N. It was found that 0.05 μL/mL of eugenol caused significant up-regulation of the relative expression of CPT-1 in the liver, significant down-regulation of the relative expression of FAS and PK in the liver and gills, a significant increase in glycogen concentration, and a significant decrease in glucose concentration. This suggests that 0.05 μL/mL of eugenol could reduce the metabolic capacity of fish. In addition, 0.05 μL/mL of eugenol caused significant up-regulation of the relative expression of CAT and a significant decrease of MDA concentration in the liver. Meanwhile, the gills showed significant up-regulation of CAT relative expression, significant down-regulation of Keap1 relative expression, and a significant increase in GSH activity, resulting in a significant increase in MDA concentration when the concentration of eugenol reached or exceeded 0.025 μL/mL. This suggests that 0.05 μL/mL eugenol could improve the antioxidant capacity of fish and lipid peroxidation levels in the gills. In conclusion, the addition of 0.05 μL/mL eugenol could improve water quality, and the metabolic and antioxidant capacities of liver and gills, but it could also increase lipid peroxidation levels in the gills under transport conditions.
Collapse
|
10
|
Lu J, Yao T, Shi S, Ye L. Effects of acute ammonia nitrogen exposure on metabolic and immunological responses in the Hong Kong oyster Crassostrea hongkongensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113518. [PMID: 35447473 DOI: 10.1016/j.ecoenv.2022.113518] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Ammonia nitrogen, a major oxygen-consuming pollutant in the environment, can adversely affect aquatic organisms such as fish, bivalves, and crustaceans. We investigated the toxic effects of ammonia nitrogen on the Hong Kong oyster, Crassostrea hongkongensis, using flow cytometry and 1H nuclear magnetic resonance metabolomics. Exposure to ammonia nitrogen caused time- and concentration-dependent alterations in various immune parameters in hemocytes and impaired the metabolic profiles of the gills. We observed changes in the rate of apoptosis, esterase activity, lysosomal mass, hemocyte counts, phagocytic activity, and mitochondrial mass. Exposure affected metabolic pathways involved in energy metabolism, osmotic balance, and oxidative stress. We concluded that ammonia nitrogen induces metabolic and hematological dysfunction in C. hongkongensis, and our findings provide insights into the biochemical defense strategies of bivalves exposed to acute high-concentration ammonia nitrogen.
Collapse
Affiliation(s)
- Jie Lu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.
| | - Tuo Yao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Shaokun Shi
- Shenzhen Fisheries Development Research Center, Shenzhen, China
| | - Lingtong Ye
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.
| |
Collapse
|
11
|
Shang ZH, Huang M, Wu MX, Mi D, You K, Zhang YL. Transcriptomic analyses of the acute aerial and ammonia stress response in the gill and liver of large-scale loach (Paramisgurnus dabryanus). Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109185. [PMID: 34500090 DOI: 10.1016/j.cbpc.2021.109185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/03/2021] [Accepted: 08/29/2021] [Indexed: 12/13/2022]
Abstract
The large-scale loach (Paramisgurnus dabryanus) is one of the most commercially important cultured species. Ammonia nitrogen accumulation is one of the key issue which limited production and animal health in aquaculture, but few of information is available on the molecular mechanisms of ammonia detoxification. We performed transcriptomic analyses of the gill and liver of large-scale loach subjected to 48 h of aerial and ammonia exposure. We obtained 47,473,424 to 56,791,496 clean reads from the aerial exposure, ammonia exposure and control groups, assembled and clustered a total of 92,658 unigenes with an average length of 909 bp and N50 of 1787 bp. Totals of 489/145 and 424/140 differentially expressed genes (DEGs) were detected in gill/liver of large-scale loach after aerial and ammonia exposure through comparative transcriptome analyses, respectively. In addition, totals of 43 gene ontology (GO) terms and 266 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified. After aerial and ammonia exposure, amino acid metabolism pathways in liver of large-scale loach were significantly enriched, suggesting that large-scale loach responded to high exogenous and endogenous ammonia stress by enhancing amino acid metabolism. Besides, the expression of several ammonia transporters (i.e., Rhesus glycoproteins and Aquaporins) in gill of large-scale loach were markedly changed after 48 h of aerial exposure, suggesting that large-scale loach responded to high endogenous ammonia stress by regulating the expression of Rh glycoproteins and Aqps related genes in gill. The results provide valuable information on the molecular mechanism of ammonia detoxification of large-scale loach to endogenous and environmental ammonia loading, will facilitate the molecular assisted breeding of ammonia resistant varieties, and will offer beneficial efforts for establishing an environmental-friendly and sustainable aquaculture industry.
Collapse
Affiliation(s)
- Ze-Hao Shang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mei Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Meng-Xiao Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Di Mi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kun You
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yun-Long Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|