1
|
Bui VKH, Nguyen TP, Tran TCP, Nguyen TTN, Duong TN, Nguyen VT, Liu C, Nguyen DD, Nguyen XC. Biochar-based fixed filter columns for water treatment: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176199. [PMID: 39278474 DOI: 10.1016/j.scitotenv.2024.176199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Biochar used in fixed filter columns (BFCs) has garnered significant attention for its capabilities in material immobilization and recovery, filtration mechanisms, and potential for scale-up, surpassing the limitations of batch experiments. This review examines the efficacy of biochar in BFCs, either as the primary filtering material or in combination with other media, across various wastewater treatment scenarios. BFCs show high treatment efficiency, with an average COD removal of 80 % ±15.3 % (95 % confidence interval: 72 %, 86 %). Nutrient removal varies, with nitrogen-ammonium and phosphorus-phosphate removal averaging 71 ± 17.1 % (60 %, 80 %) and 57 % ± 25.6 % (41 %, 74 %), respectively. Pathogen reduction is notable, averaging 2.4 ± 1.12 log10 units (1.9, 2.9). Biochemical characteristics, pollutant concentrations, and operational conditions, including hydraulic loading rate and retention time, are critical to treatment efficiency. The pyrolysis temperature (typically 300 to 800 °C) and duration (1.0 to 4.0 h) influence biochar's specific surface area (SSA), with higher temperatures generally increasing SSA. This review supports the biochar application in wastewater treatment and guides the design and operation of BFCs, bridging laboratory research and field applications. Further investigation is needed into biochar reuse as a fertilizer or energy source, along with research on BFC models under real-world conditions to fully assess their efficacy, service life, and costs for practical implementation.
Collapse
Affiliation(s)
- Vu Khac Hoang Bui
- Laboratory for Advanced Nanomaterials and Sustainable Energy Technologies, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - T Phuong Nguyen
- Faculty of Environmental Engineering Technology, Hue University, Quang Tri Branch, Hue City 520000, Viet Nam.
| | - T C Phuong Tran
- Faculty of Environmental Engineering Technology, Hue University, Quang Tri Branch, Hue City 520000, Viet Nam
| | - T T Nguyen Nguyen
- Faculty of Environmental Engineering Technology, Hue University, Quang Tri Branch, Hue City 520000, Viet Nam
| | - T Nghi Duong
- Institute of Marine Environment and Resources, Vietnam Academic Science and Technology, 246 Danang, Haiphong 100000, Viet Nam; Faculty of Marine Science and Technology, Graduate University of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam
| | - V-Truc Nguyen
- Faculty of Environment, Saigon University, Ho Chi Minh City 700000, Viet Nam
| | - Chong Liu
- College of Water Resources and Architectural Engineering, Tarim University, Xinjiang 843300, China; Department of Chemical & Materials Engineering, University of Auckland, 0926, New Zealand
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, South Korea
| | - Xuan Cuong Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam.
| |
Collapse
|
2
|
Viotti P, Marzeddu S, Antonucci A, Décima MA, Lovascio P, Tatti F, Boni MR. Biochar as Alternative Material for Heavy Metal Adsorption from Groundwaters: Lab-Scale (Column) Experiment Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:809. [PMID: 38399060 PMCID: PMC10890072 DOI: 10.3390/ma17040809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
The purpose of this manuscript is to present a review of laboratory experiments (including methodology and results) that use biochar, a specific carbon obtained by a pyrolysis process from different feedstocks, as an alternative material for heavy metal adsorption from groundwater. In recent years, many studies have been conducted regarding the application of innovative materials to water decontamination to develop a more sustainable approach to remediation processes. The use of biochar for groundwater remediation has particularly attracted the interest of researchers because it permits the reuse of materials that would be otherwise disposed of, in accordance with circular economy, and reduces the generation of greenhouse gases if compared to the use of virgin materials. A review of the different approaches and results reported in the current literature could be useful because when applying remediation technologies at the field scale, a preliminary phase in which the suitability of the adsorbent is evaluated at the lab scale is often necessary. This paper is therefore organised with a short description of the involved metals and of the biochar production and composition. A comprehensive analysis of the current knowledge related to the use of biochar in groundwater remediation at the laboratory scale to obtain the characteristic parameters of the process that are necessary for the upscaling of the technology at the field scale is also presented. An overview of the results achieved using different experimental conditions, such as the chemical properties and dosage of biochar as well as heavy metal concentrations with their different values of pH, is reported. At the end, numerical studies useful for the interpretation of the experiment results are introduced.
Collapse
Affiliation(s)
- Paolo Viotti
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Simone Marzeddu
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Angela Antonucci
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - María Alejandra Décima
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Pietro Lovascio
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Fabio Tatti
- National Centre of Waste and Circular Economy, Italian Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, 00144 Rome, Italy
| | - Maria Rosaria Boni
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| |
Collapse
|
3
|
Alowaifeer AM, Clingenpeel S, Kan J, Bigelow PE, Yoshinaga M, Bothner B, McDermott TR. Arsenic and Mercury Distribution in an Aquatic Food Chain: Importance of Femtoplankton and Picoplankton Filtration Fractions. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:225-241. [PMID: 36349954 PMCID: PMC10753857 DOI: 10.1002/etc.5516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/11/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Arsenic (As) and mercury (Hg) were examined in the Yellowstone Lake food chain, focusing on two lake locations separated by approximately 20 km and differing in lake floor hydrothermal vent activity. Sampling spanned from femtoplankton to the main fish species, Yellowstone cutthroat trout and the apex predator lake trout. Mercury bioaccumulated in muscle and liver of both trout species, biomagnifying with age, whereas As decreased in older fish, which indicates differential exposure routes for these metal(loid)s. Mercury and As concentrations were higher in all food chain filter fractions (0.1-, 0.8-, and 3.0-μm filters) at the vent-associated Inflated Plain site, illustrating the impact of localized hydrothermal inputs. Femtoplankton and picoplankton size biomass (0.1- and 0.8-μm filters) accounted for 30%-70% of total Hg or As at both locations. By contrast, only approximately 4% of As and <1% of Hg were found in the 0.1-μm filtrate, indicating that comparatively little As or Hg actually exists as an ionic form or intercalated with humic compounds, a frequent assumption in freshwaters and marine waters. Ribosomal RNA (18S) gene sequencing of DNA derived from the 0.1-, 0.8-, and 3.0-μm filters showed significant eukaryote biomass in these fractions, providing a novel view of the femtoplankton and picoplankton size biomass, which assists in explaining why these fractions may contain such significant Hg and As. These results infer that femtoplankton and picoplankton metal(loid) loads represent aquatic food chain entry points that need to be accounted for and that are important for better understanding Hg and As biochemistry in aquatic systems. Environ Toxicol Chem 2023;42:225-241. © 2022 SETAC.
Collapse
Affiliation(s)
- Abdullah M. Alowaifeer
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Scott Clingenpeel
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
- Washington River Protection Solutions, Richland, Washington, USA
| | - Jinjun Kan
- Microbiology Department, Stroud Water Research Center, Avondale, Pennsylvania, USA
| | - Patricia E. Bigelow
- US National Park Service, Center for Resources, Fisheries and Aquatic Sciences Program, Yellowstone National Park, Wyoming, USA
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Timothy R. McDermott
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
4
|
Ferchichi K, Amdouni N, Chevalier Y, Hbaieb S. Low-cost Posidonia oceanica bio-adsorbent for efficient removal of antibiotic oxytetracycline from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83112-83125. [PMID: 35761137 DOI: 10.1007/s11356-022-21647-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The presence of antibiotics as micro-contaminants in the water and aqueous environments is a health concern to humans and the ecosystem. Therefore, their elimination by adsorption to available and cheap materials in water treatment plants is a research topic of high relevance. The present paper reports on the adsorption behavior of oxytetracycline on a bio-adsorbent prepared from Posidonia oceanica; an abundant Mediterranean biomass. Characterization of the pretreated Posidonia biomaterial was achieved using several analyses such as Boehm acid-base titration method, pHPZC determination, and analysis techniques (FTIR, 13C CP-MAS NMR, optical microscopy, and TGA). The pHPZC occurred around pH 2.11. Posidonia biomaterial showed a fast and high uptake rate throughout the adsorption process, which is a definite advantage for analytical applications such as water decontamination. The experimental kinetic data fitted very rightly the pseudo-second-order kinetic model and the equilibrium uptake can adopt the bi-Langmuir isotherm model for all studied pH values which assumes adsorptions at the two localized sites. Maximum adsorption capacities of 11.8 mg∙g-1 and 4.4 mg∙g-1 for the two adsorption sites are reached at pH 6. The oxytetracycline adsorption process onto Posidonia bio-adsorbent is spontaneous (ΔadsG0 < 0), exothermic (ΔadsH0 < 0), and entropically favorable (ΔadsS0 > 0). The effect of pH on adsorption behavior and the thermodynamic parameters of adsorption are consistent with a possible origin of adsorption of oxytetracycline by means of hydrogen bonding interactions between surface hydroxyl and phenolic groups of the biomaterial and oxytetracycline. The proposed green and environmentally friendly biomaterial offers potential benefits as a bio-adsorbent in the remediation of aquatic environments contaminated by various organic materials.
Collapse
Affiliation(s)
- Karima Ferchichi
- Laboratoire de Recherche: Caractérisations, Applications Et Modélisation de Matériaux, Faculté Des Sciences de Tunis, Université de Tunis El Manar, Campus universitaire El Manar, Tunis, Tunisia
| | - Noureddine Amdouni
- Laboratoire de Recherche: Caractérisations, Applications Et Modélisation de Matériaux, Faculté Des Sciences de Tunis, Université de Tunis El Manar, Campus universitaire El Manar, Tunis, Tunisia
| | - Yves Chevalier
- Laboratoire d'Automatique, de Génie Des Procédés Et de Génie Pharmaceutique, Université de Lyon 1, UMR 5007 CNRS, 43 bd 11 Novembre, 69622, Villeurbanne, France
| | - Souhaira Hbaieb
- Laboratoire de Recherche: Caractérisations, Applications Et Modélisation de Matériaux, Faculté Des Sciences de Tunis, Université de Tunis El Manar, Campus universitaire El Manar, Tunis, Tunisia.
| |
Collapse
|
5
|
Marzeddu S, Décima MA, Camilli L, Bracciale MP, Genova V, Paglia L, Marra F, Damizia M, Stoller M, Chiavola A, Boni MR. Physical-Chemical Characterization of Different Carbon-Based Sorbents for Environmental Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15207162. [PMID: 36295233 PMCID: PMC9607634 DOI: 10.3390/ma15207162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 05/14/2023]
Abstract
Biochar has been used in various applications, e.g., as a soil conditioner and in remediation of contaminated water, wastewater, and gaseous emissions. In the latter application, biochar was shown to be a suitable alternative to activated carbon, providing high treatment efficiency. Since biochar is a by-product of waste pyrolysis, its use allows for compliance with circular economics. Thus, this research aims to obtain a detailed characterization of three carbonaceous materials: an activated carbon (CARBOSORB NC 1240®) and two biochars (RE-CHAR® and AMBIOTON®). In particular, the objective of this work is to compare the properties of three carbonaceous materials to evaluate whether the application of the two biochars is the same as that of activated carbon. The characterization included, among others, particle size distribution, elemental analysis, pH, scanning electron microscope, pore volume, specific surface area, and ionic exchange capacity. The results showed that CARBOSORB NC 1240® presented a higher specific surface (1126.64 m2/g) than AMBIOTON® (256.23 m2/g) and RE-CHAR® (280.25 m2/g). Both biochar and activated carbon belong to the category of mesoporous media, showing a pore size between 2 and 50 nm (20-500 Å). Moreover, the chemical composition analysis shows similar C, H, and N composition in the three carbonaceous materials while a higher O composition in RE-CHAR® (9.9%) than in CARBOSORB NC 1240 ® (2.67%) and AMBIOTON® (1.10%). Differences in physical and chemical properties are determined by the feedstock and pyrolysis or gasification temperature. The results obtained allowed to compare the selected materials among each other and with other carbonaceous adsorbents.
Collapse
Affiliation(s)
- Simone Marzeddu
- Department of Civil, Constructional and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
- Correspondence: ; Tel.: +39-06-44585514
| | - María Alejandra Décima
- Department of Civil, Constructional and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Luca Camilli
- Department of Civil, Constructional and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Maria Paola Bracciale
- Department of Chemical Engineering Materials Environment (DICMA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Virgilio Genova
- Department of Chemical Engineering Materials Environment (DICMA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Laura Paglia
- Department of Chemical Engineering Materials Environment (DICMA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Francesco Marra
- Department of Chemical Engineering Materials Environment (DICMA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Martina Damizia
- Department of Chemical Engineering Materials Environment (DICMA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Marco Stoller
- Department of Chemical Engineering Materials Environment (DICMA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Agostina Chiavola
- Department of Civil, Constructional and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Maria Rosaria Boni
- Department of Civil, Constructional and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| |
Collapse
|
6
|
Berg C, Crone B, Gullett B, Higuchi M, Krause MJ, Lemieux PM, Martin T, Shields EP, Struble E, Thoma E, Whitehill A. Developing innovative treatment technologies for PFAS-containing wastes. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2022; 72:540-555. [PMID: 34905459 PMCID: PMC9316338 DOI: 10.1080/10962247.2021.2000903] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/05/2021] [Accepted: 10/22/2021] [Indexed: 05/27/2023]
Abstract
The release of persistent per- and polyfluoroalkyl substances (PFAS) into the environment is a major concern for the United States Environmental Protection Agency (U.S. EPA). To complement its ongoing research efforts addressing PFAS contamination, the U.S. EPA's Office of Research and Development (ORD) commissioned the PFAS Innovative Treatment Team (PITT) to provide new perspectives on treatment and disposal of high priority PFAS-containing wastes. During its six-month tenure, the team was charged with identifying and developing promising solutions to destroy PFAS. The PITT examined emerging technologies for PFAS waste treatment and selected four technologies for further investigation. These technologies included mechanochemical treatment, electrochemical oxidation, gasification and pyrolysis, and supercritical water oxidation. This paper highlights these four technologies and discusses their prospects and the development needed before potentially becoming available solutions to address PFAS-contaminated waste.Implications: This paper examines four novel, non-combustion technologies or applications for the treatment of persistent per- and polyfluoroalkyl substances (PFAS) wastes. These technologies are introduced to the reader along with their current state of development and areas for further development. This information will be useful for developers, policy makers, and facility managers that are facing increasing issues with disposal of PFAS wastes.
Collapse
Affiliation(s)
- Chelsea Berg
- Office of Research and Development, U.S. Environmental
Protection Agency, Research Triangle Park, North Carolina, USA
| | - Brian Crone
- Office of Research and Development, U.S. Environmental
Protection Agency, Cincinnati, Ohio, USA
| | - Brian Gullett
- Office of Research and Development, U.S. Environmental
Protection Agency, Research Triangle Park, North Carolina, USA
| | - Mark Higuchi
- Office of Research and Development, U.S. Environmental
Protection Agency, Research Triangle Park, North Carolina, USA
| | - Max J. Krause
- Office of Research and Development, U.S. Environmental
Protection Agency, Cincinnati, Ohio, USA
| | - Paul M. Lemieux
- Office of Research and Development, U.S. Environmental
Protection Agency, Research Triangle Park, North Carolina, USA
| | - Todd Martin
- Office of Research and Development, U.S. Environmental
Protection Agency, Cincinnati, Ohio, USA
| | - Erin P. Shields
- Office of Research and Development, U.S. Environmental
Protection Agency, Research Triangle Park, North Carolina, USA
| | - Ed Struble
- Office of Research and Development, U.S. Environmental
Protection Agency, Research Triangle Park, North Carolina, USA
| | - Eben Thoma
- Office of Research and Development, U.S. Environmental
Protection Agency, Research Triangle Park, North Carolina, USA
| | - Andrew Whitehill
- Office of Research and Development, U.S. Environmental
Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
7
|
Ejileugha C. Biochar can mitigate co-selection and control antibiotic resistant genes (ARGs) in compost and soil. Heliyon 2022; 8:e09543. [PMID: 35663734 PMCID: PMC9160353 DOI: 10.1016/j.heliyon.2022.e09543] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Heavy metals (HMs) contamination raises the expression of antibiotic resistance (AR) in bacteria through co-selection. Biochar application in composting improves the effectiveness of composting and the quality of compost. This improvement includes the elimination and reduction of antibiotic resistant genes (ARGs). The use of biochar in contaminated soils reduces the bioaccessibility and bioavailability of the contaminants hence reducing the biological and environmental toxicity. This decrease in contaminant bioavailability reduces contaminants induced co-selection pressure. Conditions which favour reduction in HMs bioavailable fraction (BF) appear to favour reduction in ARGs in compost and soil. Biochar can prevent horizontal gene transfer (HGT) and can eliminate ARGs carried by mobile genetic elements (MGEs). This effect reduces maintenance and propagation of ARGs. Firmicutes, Proteobacteria, and Actinobacteria are the major bacteria phyla identified to be responsible for dissipation, maintenance, and propagation of ARGs. Biochar application rate at 2-10% is the best for the elimination of ARGs. This review provides insight into the usefulness of biochar in the prevention of co-selection and reduction of AR, including challenges of biochar application and future research prospects.
Collapse
Affiliation(s)
- Chisom Ejileugha
- Lancaster Environment Centre (LEC), Lancaster University, LA1 4YQ, United Kingdom
| |
Collapse
|
8
|
Abstract
Biochar is a new type of adsorption material with excellent performance, but it has some problems, such as light texture, poor sedimentation, and difficult recovery, which limits its practical application. In this study, biochar microspheres (MBCQ) were prepared by the sol–gel method using powdery biochar from Hydrocotyle vulgaris as raw material and sodium alginate as a granular carrier. Experiments were performed to investigate the dynamic adsorption characteristics of phosphorus by MBCQ in the adsorption column and the influences of particle size, initial phosphorus concentration, flow rate, and column height on the breakthrough curve. The results showed that the static adsorption properties of different particles varied and that 3-millimeter particles were optimal. The breakthrough time positively correlated with column height and negatively correlated with initial phosphorus concentration, flow rate, and particle size. Flow velocity significantly impacted breakthrough time and length of mass transfer. The bed depth/service time model accurately predicted the relationship between breakthrough times and column heights. When ct/c0 = 0.6, the average relative deviation between predicted and measured values was the lowest. The Thomas model described the MBCQ adsorption process of Ph (R2 > 0.95), which indicated that diffusion in MBCQ adsorption was not a rate-limiting step.
Collapse
|
9
|
Frišták V, Bošanská D, Pipíška M, Ďuriška L, Bell SM, Soja G. Physicochemical Characterization of Cherry Pits-Derived Biochar. MATERIALS 2022; 15:ma15020408. [PMID: 35057128 PMCID: PMC8779365 DOI: 10.3390/ma15020408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022]
Abstract
Although the suitability of some biochars for contaminants' sorption separation has been established, not all potential feedstocks have been explored and characterized. Here, we physicochemically characterized cherry pit biochar (CPB) pyrolyzed from cherry pit biomass (CP) at 500 °C, and we assessed their As and Hg sorption efficiencies in aqueous solutions in comparison to activated carbon (AC). The basic physicochemical and material characterization of the studied adsorbents was carried out using pH, electrical conductivity (EC), cation exchange capacity (CEC), concentration of surface functional groups (Boehm titration), and surface area (SA) analysis; elemental C, H, N analysis; and Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX). AsO43- anions and Hg2+ cations were selected as model contaminants used to test the sorption properties of the sorption materials. Characterization analyses confirmed a ninefold increase in SA in the case of CPB. The total C concentration increased by 26%, while decreases in the total H and N concentrations were observed. The values of carbonate and ash contents decreased by about half due to pyrolysis processes. The concentrations of surface functional groups of the analyzed biochar obtained by Boehm titration confirmed a decrease in carboxyl and lactone groups, while an increase in phenolic functional groups was observed. Changes in the morphology and surface functionality of the pyrolyzed material were confirmed by SEM-EDX and FTIR analyses. In sorption experiments, we found that the CPB showed better results in the sorption separation of Hg2+ than in the sorption separation of AsO43-. The sorption efficiency for the model cation increased in the order CP < CPB < AC and, for the model anion, it increased in the order CPB < CP < AC.
Collapse
Affiliation(s)
- Vladimír Frišták
- Department of Chemistry, Trnava University in Trnava, 91843 Trnava, Slovakia; (D.B.); (M.P.)
- Correspondence: ; Tel.: +421-33-592-1459
| | - Diana Bošanská
- Department of Chemistry, Trnava University in Trnava, 91843 Trnava, Slovakia; (D.B.); (M.P.)
| | - Martin Pipíška
- Department of Chemistry, Trnava University in Trnava, 91843 Trnava, Slovakia; (D.B.); (M.P.)
| | - Libor Ďuriška
- Institute of Materials Science, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, 91724 Trnava, Slovakia;
| | - Stephen M. Bell
- Institute of Environmental Science and Technology (ICTA-UAB), Universitat Autónoma de Barcelona, 08193 Barcelona, Spain;
| | - Gerhard Soja
- Energy Department, Austrian Institute of Technology GmbH, 3430 Tulln, Austria;
- Institute for Chemical and Energy Engineering, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| |
Collapse
|
10
|
Shentu J, Li X, Han R, Chen Q, Shen D, Qi S. Effect of site hydrological conditions and soil aggregate sizes on the stabilization of heavy metals (Cu, Ni, Pb, Zn) by biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149949. [PMID: 34525744 DOI: 10.1016/j.scitotenv.2021.149949] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Biochar is a popular material that would effectively immobilize heavy metals in soil, which can greatly decrease the health risk of heavy metals. Although many previous studies have studied the immobilization of heavy metals by biochar, the influence of hydrological conditions on the immobilization effect is still not clear. This paper carried out column experiments to study the effect of fluctuating groundwater table on Cu, Ni, Pb, Zn distribution and speciation with the addition of biochar from pyrolysis of swine manure. Experimental results showed that biochar could significantly decrease the leaching toxicity of Cu and Ni by 24.4% and 44.7% respectively, while the immobilization effect of Pb and Zn was relatively insignificant. The average reduction percentage of bioavailable Cu was 14.5%, 39.5% and 33.3% in the unsaturated zone, fluctuating zone and saturated zone respectively, showing the better immobilization effect in the fluctuating zone and saturated zone. The residual fraction of heavy metals increased significantly after the addition of biochar, and the increase of residual fraction was larger in small soil aggregates. This study helped illustrate the influence of hydrological conditions and soil aggregate sizes on the stabilization effect of heavy metals by biochar, which could be used to guide the remediation process of sites contaminated by heavy metals.
Collapse
Affiliation(s)
- Jiali Shentu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Xiaoxiao Li
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Ruifang Han
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Qianqian Chen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Shengqi Qi
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310012, PR China.
| |
Collapse
|
11
|
Roy S, Sarkar D, Datta R, Bhattacharya SS, Bhattacharyya P. Assessing the arsenic-saturated biochar recycling potential of vermitechnology: Insights on nutrient recovery, metal benignity, and microbial activity. CHEMOSPHERE 2022; 286:131660. [PMID: 34315078 DOI: 10.1016/j.chemosphere.2021.131660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/11/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Biochar mediated pollutant removal is gaining attention because of high efficiency of the process. However, effective recycling avenues of the pollutant-saturated biochars are scarce in the knowledge base; while such materials can be a new source of long-range contamination. Therefore, potential of vermitechnology for eco-friendly recycling of pollutant-loaded biochar was assessed by using arsenic-saturated native (NBC) and exfoliated (EBC) biochars as feedstocks for the first time. Interestingly, the bioavailable arsenic fractions (water soluble and exchangeable) considerably reduced by 22-44 % with concurrent increment (~8-15 %) of the recalcitrant (residual and organic bound) fractions in the biochar-based feedstocks. Consequently, ~2-3 folds removal of the total arsenic was achieved through vermicomposting. The earthworm population growth (2.5-3 folds) was also highly satisfactory in the biochar-based feedstocks. The results clearly imply that Eisenia fetida could compensate the arsenic-induced stress to microbial population and greatly augmented microbial biomass, respiration and enzyme activity by 3-12 folds. Moreover, biochar-induced alkalinity was significantly neutralized in the vermibeds, which remarkably balanced the TOC level and nutrient (N, P, and K) availability particularly in EBC + CD vermibeds. Overall, the nutrient recovery potential and arsenic removal efficiency of vermitechnology was clearly exhibited in NBC/EBC + CD (12.5:87.5) feedstocks. Hence, it is abundantly clear that vermitechnology can be a suitable option for eco-friendly recycling of pollutant-saturated sorbing agents, like biochars.
Collapse
Affiliation(s)
- Shuvrodeb Roy
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand, 815301, India
| | - Dibyendu Sarkar
- Stevens Institute of Technology, Department of Civil, Environmental, and Ocean Engineering, Hoboken, NJ, 07030, USA
| | - Rupali Datta
- Department of Biological Science, Michigan Technological University, Michigan, USA
| | - Satya Sundar Bhattacharya
- Soil and Agro-bioengineering Lab, Department of Environmental Science, Tezpur University, Tezpur, Assam, 784028, India.
| | - Pradip Bhattacharyya
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand, 815301, India.
| |
Collapse
|
12
|
A Life Cycle Assessment of an Energy-Biochar Chain Involving a Gasification Plant in Italy. LAND 2021. [DOI: 10.3390/land10111256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Life cycle assessment (LCA) is a fundamental tool for evaluating the environmental and energy load of a production cycle. Its application to renewable energy production systems offers the possibility of identifying the environmental benefits of such processes—especially those related to the by-products of production processes (i.e., digestion or biochar). Biochar has received worldwide interest because of its potential uses in bioenergy production, due to its coproducts (bio-oil and syngas), as well as in global warming mitigation, sustainable agriculture, pollutant removal, and other uses. Biochar production and use of soil is a strategy for carbon sequestration that could contribute to the reduction of emissions, providing simultaneous benefits to soil and opportunities for bioenergy generation. However, to confirm all of biochar’s benefits, it is necessary to characterize the environmental and energy loads of the production cycle. In this work, soil carbon sequestration, nitrous oxide emissions, use of fertilizers, and use of water for irrigation have been considered in the biochar’s LCA, where the latter is used as a soil conditioner. Primary data taken from experiments and prior studies, as well as open-source available databases, were combined to evaluate the environmental impacts of energy production from biomass, as well as the biochar life cycle, including pre- and post-conversion processes. From the found results, it can be deduced that the use of gasification production of energy and biochar is an attractive strategy for mitigating the environmental impacts analyzed here—especially climate change, with a net decrease of about −8.3 × 103 kg CO2 eq. Finally, this study highlighted strategic research developments that combine the specific characteristics of biochar and soil that need to be amended.
Collapse
|
13
|
A Review on the Removal of Carbamazepine from Aqueous Solution by Using Activated Carbon and Biochar. SUSTAINABILITY 2021. [DOI: 10.3390/su132111760] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Carbamazepine (CBZ), one of the most used pharmaceuticals worldwide and a Contaminant of Emerging Concern, represents a potential risk for the environment and human health. Wastewater treatment plants (WWTPs) are a significant source of CBZ to the environment, polluting the whole water cycle. In this review, the CBZ presence and fate in the urban water cycle are addressed, with a focus on adsorption as a possible solution for its removal. Specifically, the scientific literature on CBZ removal by activated carbon and its possible substitute Biochar, is comprehensively scanned and summed up, in view of increasing the circularity in water treatments. CBZ adsorption onto activated carbon and biochar is analyzed considering several aspects, such as physicochemical characteristics of the adsorbents, operational conditions of the adsorption processes and adsorption kinetics and isotherms models. WWTPs usually show almost no removal of CBZ (even negative), whereas removal is witnessed in drinking water treatment plants through advanced treatments (even >90%). Among these, adsorption is considered one of the preferable methods, being economical and easier to operate. Adsorption capacity of CBZ is influenced by the characteristics of the adsorbent precursors, pyrolysis temperature and modification or activation processes. Among operational conditions, pH shows low influence on the process, as CBZ has no charge in most pH ranges. Differently, increasing temperature and rotational speed favor the adsorption of CBZ. The presence of other micro-contaminants and organic matter decreases the CBZ adsorption due to competition effects. These results, however, concern mainly laboratory-scale studies, hence, full-scale investigations are recommended to take into account the complexity of the real conditions.
Collapse
|
14
|
Darajeh N, Alizadeh H, Leung DWM, Rashidi Nodeh H, Rezania S, Farraji H. Application of Modified Spent Mushroom Compost Biochar (SMCB/Fe) for Nitrate Removal from Aqueous Solution. TOXICS 2021; 9:277. [PMID: 34822667 PMCID: PMC8621717 DOI: 10.3390/toxics9110277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
The public is already aware that nitrate pollution caused by nutrient runoff from farms is harmful to aquatic life and human health, and there is an urgent need for a product/technology to solve this problem. A biochar adsorbent was synthesized and used to remove nitrate ions from aqueous media based on spent mushroom compost (SMC), pre-treated with iron (III) chloride hexahydrate and pyrolyzed at 600 °C. The surface properties and morphology of SMCB/Fe were investigated using Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The effect of main parameters such as the adsorbent dosages, pH of the solutions, contact times, and ion concentrations on the efficiency of nitrate removal was investigated. The validity of the experimental method was examined by the isothermal adsorption and kinetic adsorption models. The nitrate sorption kinetics were found to follow the pseudo-second-order model, with a higher determination coefficient (0.99) than the pseudo-first-order (0.86). The results showed that the maximum percentage of nitrate adsorption was achieved at equilibrium pH 5-7, after 120 min of contact time, and with an adsorbent dose of 2 g L-1. The highest nitrate adsorption capacity of the modified adsorbent was 19.88 mg g-1.
Collapse
Affiliation(s)
- Negisa Darajeh
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand;
| | - Hossein Alizadeh
- Bio-Protection Research Centre, Lincoln University, Lincoln 7647, New Zealand;
| | - David W. M. Leung
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand;
| | - Hamid Rashidi Nodeh
- Food Technology and Agricultural Products Research Centre, Standard Research Institute, Karaj 3174734563, Iran;
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul 05006, Korea;
| | - Hossein Farraji
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand;
| |
Collapse
|
15
|
Abstract
Chitin-char is obtained from fast pyrolysis of chitin. To obtain the maximum surface area, chitin-char is treated by nitric acid. Then, a kind of new arsenic removal bio-material is prepared by loading Ca(OH)2 on the char (called Ca(OH)2-char). IR spectroscopy before and after char treatment reveal at least three distinct patterns of peak changes. An adsorption study is performed at different doses, pHs, and coexisting ions in the batch mode. The adsorption kinetics follows two first-order equations. Kinetic studies yield an optimum equilibrium time of 2 h with an adsorbent dose of 0.4 g/L and concentration of 10 mg/L. Using only 0.4 g/L of carbon, the maximum removal capacity is about 99.8%. The result indicates that the Ca(OH)2-char has a high adsorption capacity in the process of removing arsenic (III).
Collapse
|