1
|
Gawankar S, Masten SJ, Lahr RH. Review of the occurrence, treatment technologies, and detection methods for saxitoxins in freshwaters. JOURNAL OF WATER AND HEALTH 2024; 22:1472-1490. [PMID: 39212282 DOI: 10.2166/wh.2024.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
The increasing occurrence of saxitoxins in freshwaters is becoming a concern for water treatment facilities owing to its structural properties which make it resistant to oxidation at pH < 8. Hence, it is crucial to be able to monitor these toxins in surface and drinking water to protect public health. This review aims to outline the current state of knowledge related to the occurrence of saxitoxins in freshwaters and its removal strategies and provide a critical assessment of the detection methods to provide a basis for further development. Temperature and nutrient content are some of the factors that influence the production of saxitoxins in surface waters. A high dose of sodium hypochlorite with sufficient contact time or activated carbon has been shown to efficiently remove extracellular saxitoxins to meet the drinking water guidelines. While HILIC-MS has proven to be a powerful technology for more sensitive and reliable detection of saxitoxin and variants after solid phase extraction, ELISA is cost-effective and easy to use and is used by Ohio EPA for surveillance with a limit of detection of 0.015 μg/L. However, there is a need for the development of cost-effective and sensitive techniques that can quantify the variants of saxitoxin.
Collapse
Affiliation(s)
- Shardula Gawankar
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA E-mail:
| | - Susan J Masten
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Rebecca H Lahr
- The City of Ann Arbor, Department of Water Treatment, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Santos-Silva RDD, Severiano JDS, Chia MA, Queiroz TM, Cordeiro-Araújo MK, Barbosa JEDL. Unveiling the link between Raphidiopsis raciborskii blooms and saxitoxin levels: Evaluating water quality in tropical reservoirs, Brazil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123401. [PMID: 38244903 DOI: 10.1016/j.envpol.2024.123401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
The proliferation of Raphidiopsis raciborskii blooms has sparked concerns regarding potential human exposure to heightened saxitoxins (STXs) levels. Thus, comprehending how environmental elements drive the proliferation of this STXs-producing species can aid in predicting human exposure risks. This study aimed to explore the link between cyanobacteria R. raciborskii, STXs cyanotoxins, and environmental factors in 37 public supply reservoirs in the tropical region and assess potential health hazards these toxins pose in the reservoir waters. A Structural Equation Model was used to assess the impact of environmental factors (water volume and physical and chemical variables) on R. raciborskii biomass and STXs levels. Furthermore, the potential risk of STXs exposure from consuming untreated reservoir water was evaluated. Lastly, the cumulative distribution function (CDF) of STXs across the reservoirs was computed. Our findings revealed a correlation between R. raciborskii biomass and STXs concentrations. Total phosphorus emerged as a critical environmental factor positively influencing species biomass and indirectly affecting STXs levels. pH significantly influenced STXs concentrations, indicating different factors influencing R. raciborskii biomass and STXs. Significantly, for the first time, the risk of STXs exposure was gauged using the risk quotient (HQ) for untreated water consumption from public supply reservoirs in Brazil's semi-arid region. Although the exposure risks were generally low to moderate, the CDF underscored the risk of chronic exposure due to low toxin concentrations in over 90% of samples. These outcomes emphasize the potential expansion of R. raciborskii in tropical settings due to increased phosphorus, amplifying waterborne STXs levels and associated intoxication risks. Thus, this study reinforces the importance of nutrient control, particularly phosphorus regulation, as a mitigation strategy against R. raciborskii blooms and reducing STXs intoxication hazards.
Collapse
Affiliation(s)
- Ranielle Daiana Dos Santos-Silva
- Ecology Program, Department of Biology, State University of Paraíba - UEPB, Rua Baraúnas, nº. 351, Universitario, 58.429-500, Campina Grande, PB, Brazil
| | - Juliana Dos Santos Severiano
- Ecology Program, Department of Biology, State University of Paraíba - UEPB, Rua Baraúnas, nº. 351, Universitario, 58.429-500, Campina Grande, PB, Brazil.
| | - Mathias Ahii Chia
- Department of Botany, Ahmadu University Bello, 81 0001, Zaria, Nigeria; Department of Ecology, University of Brasília - UnB, Graduate Program in Ecology. Institute of Biological Sciences - IB, Asa Norte, DF, 70910-900, Brasilia, Brazil
| | - Tatiane Medeiros Queiroz
- Ecology Program, Department of Biology, State University of Paraíba - UEPB, Rua Baraúnas, nº. 351, Universitario, 58.429-500, Campina Grande, PB, Brazil
| | - Micheline Kézia Cordeiro-Araújo
- Department of Cellular Biology, University of Brasília - UnB, Graduate Program in Microbial Biology. Institute of Biological Sciences - IB, Bloco E, s/n, Asa Norte, DF, 70910-900, Brasilia, Brazil
| | - José Etham de Lucena Barbosa
- Ecology Program, Department of Biology, State University of Paraíba - UEPB, Rua Baraúnas, nº. 351, Universitario, 58.429-500, Campina Grande, PB, Brazil
| |
Collapse
|
3
|
Jeon Y, Struewing I, McIntosh K, Tidd M, Webb L, Ryu H, Mash H, Lu J. Spatial and Temporal Variability of Saxitoxin-Producing Cyanobacteria in U.S. Urban Lakes. Toxins (Basel) 2024; 16:70. [PMID: 38393148 PMCID: PMC10892283 DOI: 10.3390/toxins16020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Harmful cyanobacterial blooms (HCBs) are of growing global concern due to their production of toxic compounds, which threaten ecosystems and human health. Saxitoxins (STXs), commonly known as paralytic shellfish poison, are a neurotoxic alkaloid produced by some cyanobacteria. Although many field studies indicate a widespread distribution of STX, it is understudied relative to other cyanotoxins such as microcystins (MCs). In this study, we assessed eleven U.S. urban lakes using qPCR, sxtA gene-targeting sequencing, and 16S rRNA gene sequencing to understand the spatio-temporal variations in cyanobacteria and their potential role in STX production. During the blooms, qPCR analysis confirmed the presence of the STX-encoding gene sxtA at all lakes. In particular, the abundance of the sxtA gene had a strong positive correlation with STX concentrations in Big 11 Lake in Kansas City, which was also the site with the highest quantified STX concentration. Sequencing analysis revealed that potential STX producers, such as Aphanizomenon, Dolichospermum, and Raphidiopsis, were present. Further analysis targeting amplicons of the sxtA gene identified that Aphanizomenon and/or Dolichospermum are the primary STX producer, showing a significant correlation with sxtA gene abundances and STX concentrations. In addition, Aphanizomenon was associated with environmental factors, such as conductivity, sulfate, and orthophosphate, whereas Dolichospermum was correlated with temperature and pH. Overall, the results herein enhance our understanding of the STX-producing cyanobacteria and aid in developing strategies to control HCBs.
Collapse
Affiliation(s)
- Youchul Jeon
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Ian Struewing
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Kyle McIntosh
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Marcie Tidd
- United States Environmental Protection Agency, Region 8, Lakewood, CO 80225, USA
| | - Laura Webb
- United States Environmental Protection Agency, Region 7, Kansas City, KS 66101, USA
| | - Hodon Ryu
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Heath Mash
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Jingrang Lu
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| |
Collapse
|
4
|
dos Reis GC, de Carvalho GHA, Vilar MCP, Azevedo SMFDOE, Ferrão-Filho ADS. Saxitoxin-Producing Raphidiopsis raciborskii (Cyanobacteria) Constrains Daphnia Fitness and Feeding Rate despite High Nutritious Food Availability. TOXICS 2023; 11:693. [PMID: 37624198 PMCID: PMC10458173 DOI: 10.3390/toxics11080693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/19/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Changes in food quality can dramatically impair zooplankton fitness, especially in eutrophic water bodies where cyanobacteria are usually predominant. Cyanobacteria are considered a food with low nutritional value, and some species can produce bioactive secondary metabolites reported as toxic to zooplankton. Considering that cyanobacteria can limit the survival, growth and reproduction of zooplankton, we hypothesized that the dietary exposure of neotropical Daphnia species (D. laevis and D. gessneri) to saxitoxin-producing cyanobacteria impairs Daphnia feeding rates and fitness regardless of a high availability of nutritious algae. Life table and grazing assays were conducted with different diets: (1) without nutritional restriction, where neonates were fed with diets at a constant green algae biomass (as a nutritious food source), and an increasing cyanobacterial concentration (toxic and poor food source), and (2) with diets consisting of different proportions of green algae (nutritious) and cyanobacteria (poor food) at a total biomass 1.0 mg C L-1. In general, the presence of high proportions of cyanobacteria promoted a decrease in Daphnia somatic growth, reproduction and the intrinsic rate of population increase (r) in both diets with more pronounced effects in the nutritionally restricted diet (90% R. raciborskii). A two-way ANOVA revealed the significant effects of species/clone and treatments in both assays, with significant interaction between those factors only in the second assay. Regarding the grazing assay, only D. laevis was negatively affected by increased cyanobacterial proportions in the diet. In the life table assay with constant nutritious food, a reduction in the reproduction and the intrinsic rate of the population increase (r) of all species were observed. In conclusion, we found adverse effects of the toxic cyanobacterial strain R. raciborskii on Daphnia fitness, regardless of the constant amount of nutritious food available, proving the toxic effect of R. raciborskii and that the nutritional quality of the food has a greater influence on the fitness of these animals.
Collapse
Affiliation(s)
- Gabriele Costa dos Reis
- Laboratory of Evaluation and Promotion of Environmental Health, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (G.C.d.R.); (G.H.A.d.C.)
| | - Gustavo Henrique A. de Carvalho
- Laboratory of Evaluation and Promotion of Environmental Health, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (G.C.d.R.); (G.H.A.d.C.)
| | - Mauro Cesar Palmeira Vilar
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil; (M.C.P.V.); (S.M.F.d.O.e.A.)
| | - Sandra Maria Feliciano de Oliveira e Azevedo
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil; (M.C.P.V.); (S.M.F.d.O.e.A.)
| | - Aloysio da Silva Ferrão-Filho
- Laboratory of Evaluation and Promotion of Environmental Health, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (G.C.d.R.); (G.H.A.d.C.)
| |
Collapse
|
5
|
Bashir F, Bashir A, Bouaïcha N, Chen L, Codd GA, Neilan B, Xu WL, Ziko L, Rajput VD, Minkina T, Arruda RS, Ganai BA. Cyanotoxins, biosynthetic gene clusters, and factors modulating cyanotoxin biosynthesis. World J Microbiol Biotechnol 2023; 39:241. [PMID: 37394567 DOI: 10.1007/s11274-023-03652-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/17/2023] [Indexed: 07/04/2023]
Abstract
Cyanobacterial harmful algal blooms (CHABs) are a global environmental concern that encompasses public health issues, water availability, and water quality owing to the production of various secondary metabolites (SMs), including cyanotoxins in freshwater, brackish water, and marine ecosystems. The frequency, extent, magnitude, and duration of CHABs are increasing globally. Cyanobacterial species traits and changing environmental conditions, including anthropogenic pressure, eutrophication, and global climate change, together allow cyanobacteria to thrive. The cyanotoxins include a diverse range of low molecular weight compounds with varying biochemical properties and modes of action. With the application of modern molecular biology techniques, many important aspects of cyanobacteria are being elucidated, including aspects of their diversity, gene-environment interactions, and genes that express cyanotoxins. The toxicological, environmental, and economic impacts of CHABs strongly advocate the need for continuing, extensive efforts to monitor cyanobacterial growth and to understand the mechanisms regulating species composition and cyanotoxin biosynthesis. In this review, we critically examined the genomic organization of some cyanobacterial species that lead to the production of cyanotoxins and their characteristic properties discovered to date.
Collapse
Affiliation(s)
- Fahim Bashir
- Department of Environmental Science, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Arif Bashir
- Department of Clinical Biochemistry and Biotechnology, Government College for Women, Nawa-Kadal, Srinagar, Jammu & Kashmir, India
| | - Noureddine Bouaïcha
- Laboratory Ecology, Systematic, and Evolution, UMR 8079 Univ. Paris-Sud, CNRS, AgroParisTech, University Paris-Saclay, 91190, Gif-sur-Yvette, France.
| | - Liang Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science (SEES), Yunnan University (YNU), 650500, Kunming, China.
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China.
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Geoffrey A Codd
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Brett Neilan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Wen-Li Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China
| | - Laila Ziko
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Cairo, Egypt
- Biology Department, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Renan Silva Arruda
- Laboratory of Ecology and Physiology of Phytoplankton, Department of Plant Biology, University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - Bashir Ahmad Ganai
- Center of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| |
Collapse
|
6
|
Li J, Xiao X, Guo L, Chen H, Feng M, Yu X. A novel qPCR-based method to quantify seven phyla of common algae in freshwater and its application in water sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153340. [PMID: 35085638 DOI: 10.1016/j.scitotenv.2022.153340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/27/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
The light microscope is widely used to count algae, however, there are some disadvantages associated with this method, such as time consuming and laborious. In this study, a qPCR-based method was established for quantifying seven phyla of common algae in freshwater, including Cyanophyta, Chlorophyta, Euglenophyta, Bacillariophyta, Dinophyta, Cryptophyta, and Chrysophyta. The accuracy of qPCR in estimating algal cells was confirmed by comparing it with the microscopic counting. The qPCR was used to detect the cell concentration of seven phyla of algae in Longhu Reservoir, showing that green algal blooms occurred during the monitoring period. The intensity of algal blooms was further evaluated according to the classification standard, which suggested that the grade of this bloom was mild. An early warning system was proposed to early warn the occurrence of algal blooms in two water sources, Longhu Reservoir and Dongzhang Reservoir. The qPCR method developed in this study could be a useful tool in the monitoring of algae. The early warning system reported here will have important implications for the effective warning of algal blooms.
Collapse
Affiliation(s)
- Jingjing Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyan Xiao
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Lizheng Guo
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Chen
- Fujian Provincial Investigation, Design & Research Institute of Water Conservancy & Hydropower, No.158 Dongda Road, Gulou District, Fuzhou 350001, China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
7
|
Dos Santos Machado L, Dörr F, Dörr FA, Frascareli D, Melo DS, Gontijo ESJ, Friese K, Pinto E, Rosa AH, Pompêo MM, Moschini-Carlos V. Permanent occurrence of Raphidiopsis raciborskii and cyanotoxins in a subtropical reservoir polluted by domestic effluents (Itupararanga reservoir, São Paulo, Brazil). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18653-18664. [PMID: 34697712 DOI: 10.1007/s11356-021-16994-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Toxic cyanobacteria blooms are a frequent problem in subtropical reservoirs and freshwater systems. The purpose of this study was to investigate the occurrence of potentially toxic cyanobacteria and the environmental conditions associated with the presence of cyanotoxins in a Brazilian subtropical reservoir. Five collections were carried out at seven sampling locations in the reservoir, during the rainy and dry seasons, between the years 2016 and 2017. There was permanent occurrence of Raphidiopsis raciborskii (Woloszynska) Aguilera, Berrendero Gómez, Kastovsky, Echenique & Salerno (Phycologia 57(2):130-146, 2018), ranging between dominant and abundant, with an average biomass of 38.8 ± 29.9 mg L-1. Also abundant were Dolichospermum solitarium, D. planctonicum, Planktothrix isothrix, and Aphanizomenon gracile. Saxitoxin (STX) was detected in all the collected samples (0.11 ± 0.05 µg L-1). Microcystin (MC) was also detected, but at lower concentrations (0.01 ± 0.0 µg L-1). Low availability of NO3- and phosphorus limitation had significant effects on the R. raciborskii biomass and the levels of STX and MC. It was observed that R. raciborskii was sensitive to thermal stratification, at the same time that STX levels were higher. This suggested that STX was produced under conditions that restricted the growth of R. raciborskii. These are important findings, because they add information about the permanent occurrence of STX and R. raciborskii in an aquatic ecosystem limited by phosphorus, vulnerable to climatic variations, and polluted by domestic effluents.
Collapse
Affiliation(s)
| | - Fabiane Dörr
- Laboratory of Toxin and Algae Natural Products, University of Sao Paulo, São Paulo, Brazil
| | - Felipe Augusto Dörr
- Laboratory of Toxin and Algae Natural Products, University of Sao Paulo, São Paulo, Brazil
| | - Daniele Frascareli
- ICT, University of São Paulo State (UNESP), Sorocaba Campus, Sorocaba, Brazil
| | - Darllene S Melo
- ICT, University of São Paulo State (UNESP), Sorocaba Campus, Sorocaba, Brazil
| | - Erik S J Gontijo
- ICT, University of São Paulo State (UNESP), Sorocaba Campus, Sorocaba, Brazil
| | - Kurt Friese
- Lake Research Department, UFZ-Helmholtz Centre for Environmental Research, Brueckstr 3a, 39114, Magdeburg, Germany
| | - Ernani Pinto
- Laboratory of Toxin and Algae Natural Products, University of Sao Paulo, São Paulo, Brazil
| | - André Henrique Rosa
- ICT, University of São Paulo State (UNESP), Sorocaba Campus, Sorocaba, Brazil
| | - Marcelo M Pompêo
- Department of Ecology, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
8
|
Research Characteristics on Cyanotoxins in Inland Water: Insights from Bibliometrics. WATER 2022. [DOI: 10.3390/w14040667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Eutrophication is a long-standing ecological and environmental problem, and the severity of harmful algal blooms continues to increase, causing large economic losses globally. One of the most important hazards created by harmful algal blooms is the production of cyanotoxins. This study aimed to analyze the characteristics and development trends of cyanotoxin research through bibliometric analysis. A total of 3265 publications from 1990 to 2020 on cyanotoxins were retrieved from the Science Citation Index (SCI) Expanded database, Web of Science. Over the past 30 years, most research has been concentrated in China (21.4%) and the USA (21.3%). Throughout the study period, microcystin was the focus of the research, accounting for 86% of the total number of publications. A word frequency analysis revealed that as people became more aware of drinking water safety and the construction of large-scale water conservation facilities, “reservoirs” and “rivers” became hot words for researchers, while “lakes” have always been important research objects. Nonmetric multidimensional scaling (NMDS) analysis of studies from the five countries with the largest numbers of publications showed that Chinese researchers typically associate eutrophication with Microcystis, while research subjects in other countries are more extensive and balanced. The development of cyanotoxin research around the world is not even, and we need to push for more research on major lakes that are outside of North America, Europe and China.
Collapse
|