Patel D, Tripathi KM, Sonwani RK. Waste-Derived Carbon Nano-Onions for the Removal of Organic Dye from Wastewater and Phytotoxicity Studies.
ACS OMEGA 2024;
9:30834-30845. [PMID:
39035934 PMCID:
PMC11256328 DOI:
10.1021/acsomega.4c03570]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Dyes are extensively employed in industries, namely, textiles, cosmetics, paper, pharmaceuticals, tanning, etc. The effluent released from these industries contains various kinds of harmful dyes that adversely impact living beings and the environment due to their recalcitrant and toxic nature. In this study, an effort has been made to eliminate the methylene blue (MB) from wastewater using carbon nano-onions (CNOs) produced from waste frying oil (WFO) using an economical and eco-friendly wick pyrolysis method. The impact of process variables, namely, pH, temperature, process time, MB dye concentration, and adsorbent, was examined for optimum dye removal. The dye removal efficiency (RE) of 99.78% was obtained in 20 min under optimum conditions. The pseudo-second-order model demonstrated a better kinetic fitting with the experimental data. The Langmuir model represented the maximum adsorption capacity (q max) of 43.11 ± 2.56 mg g-1. The regeneration studies demonstrated that the CNOs achieved ∼99.6% MB dye removal over three cycles. Brassica nigra seeds irrigated in treated wastewater showed better growth (3.29 cm) than untreated dye wastewater, which confirms the environmental sustainability of the overall process.
Collapse