Kazimierczuk K, Barrows SE, Olarte MV, Qafoku NP. Decarbonization of Agriculture: The Greenhouse Gas Impacts and Economics of Existing and Emerging Climate-Smart Practices.
ACS ENGINEERING AU 2023;
3:426-442. [PMID:
38144676 PMCID:
PMC10739617 DOI:
10.1021/acsengineeringau.3c00031]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 12/26/2023]
Abstract
The worldwide emphasis on reducing greenhouse gas (GHG) emissions has increased focus on the potential to mitigate emissions through climate-smart agricultural practices, including regenerative, digital, and controlled environment farming systems. The effectiveness of these solutions largely depends on their ability to address environmental concerns, generate economic returns, and meet supply chain needs. In this Review, we summarize the state of knowledge on the GHG impacts and profitability of these three existing and emerging farming systems. Although we find potential for CO2 mitigation in all three approaches (depending on site-specific and climatic factors), we point to the greater level of research covering the efficacy of regenerative and digital agriculture in tackling non-CO2 emissions (i.e., N2O and CH4), which account for the majority of agriculture's GHG footprint. Despite this greater research coverage, we still find significant methodological and data limitations in accounting for the major GHG fluxes of these practices, especially the lifetime CH4 footprint of more nascent climate-smart regenerative agriculture practices. Across the approaches explored, uncertainties remain about the overall efficacy and persistence of mitigation-particularly with respect to the offsetting of soil carbon sequestration gains by N2O emissions and the lifecycle emissions of controlled environment agriculture systems compared to traditional systems. We find that the economic feasibility of these practices is also system-specific, although regenerative agriculture is generally the most accessible climate-smart approach. Robust incentives (including carbon credit considerations), investments, and policy changes would make these practices more financially accessible to farmers.
Collapse