1
|
Wang L, Shao M, Xie ZL, Mulfort KL. Recent Advances in Immobilizing and Benchmarking Molecular Catalysts for Artificial Photosynthesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39495742 DOI: 10.1021/acs.langmuir.4c03249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Transition metal complexes have been widely used as catalysts or chromophores in artificial photosynthesis. Traditionally, they are employed in homogeneous settings. Despite their functional versatility and structural tunability, broad industrial applications of these catalysts are impeded by the limitations of homogeneous catalysis such as poor catalyst recyclability, solvent constraints (mostly organic solvents), and catalyst durability. Over the past few decades, researchers have developed various methods for molecular catalyst heterogenization to overcome these limitations. In this review, we summarize recent developments in heterogenization strategies, with a focus on describing methods employed in the heterogenization process and their effects on catalytic performances. Alongside the in-depth discussion of heterogenization strategies, this review aims to provide a concise overview of the key metrics associated with heterogenized systems. We hope this review will aid researchers who are new to this research field in gaining a better understanding.
Collapse
Affiliation(s)
- Lei Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China
| | - Mengjiao Shao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China
| | - Zhu-Lin Xie
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Karen L Mulfort
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
2
|
Zhao F, Cheng T, Lu X, Ghorai N, Yang Y, Geletii YV, Musaev DG, Hill CL, Lian T. Charge Transfer Mechanism on a Cobalt-Polyoxometalate-TiO 2 Photoanode for Water Oxidation in Acid. J Am Chem Soc 2024; 146:14600-14609. [PMID: 38748814 PMCID: PMC11140742 DOI: 10.1021/jacs.4c01441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
We constructed a photoanode comprising the homogeneous water oxidation catalyst (WOC) Na8K8[Co9(H2O)6(OH)3(HPO4)2(PW9O34)3] (Co9POM) and nanoporous n-type TiO2 photoelectrodes (henceforth "TiO2-Co9POM") by first anchoring the cationic 3-aminopropyltrimethoxysilane (APS) ligand on a metal oxide light absorber, followed by treatment of the metal oxide-APS with a solution of the polyoxometalate WOC. The resulting TiO2-Co9POM photoelectrode exhibits a 3-fold oxygen evolution photocurrent enhancement compared to bare TiO2 in aqueous acidic conditions. Three-element (Co 2p, W 4f, and O 1s) X-ray photoelectron spectroscopy and Raman spectroscopy studies before and after use indicate that surface-bound Co9POM retains its structural integrity throughout all photoelectrochemical water oxidation studies reported here. Extensive charge-transfer mechanistic studies by photoelectrochemical techniques and transient absorption spectroscopy elucidate that Co9POM serves as an efficient WOC, extracting photogenerated holes from TiO2 on the picosecond time scale. This is the first comprehensive mechanistic investigation elucidating the roles of polyoxometalates in POM-photoelectrode hybrid oxygen evolution reaction systems.
Collapse
Affiliation(s)
- Fengyi Zhao
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ting Cheng
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Xinlin Lu
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Nandan Ghorai
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Yiwei Yang
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Yurii V. Geletii
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Djamaladdin G. Musaev
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Cherry
L. Emerson Centre for Scientific Computation, Emory University, 1515
Dickey Drive, Atlanta, Georgia 30322, United States
| | - Craig L. Hill
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Tianquan Lian
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
3
|
Velasco-Garcia L, Casadevall C. Bioinspired photocatalytic systems towards compartmentalized artificial photosynthesis. Commun Chem 2023; 6:263. [PMID: 38049562 PMCID: PMC10695942 DOI: 10.1038/s42004-023-01069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
Artificial photosynthesis aims to produce fuels and chemicals from simple building blocks (i.e. water and carbon dioxide) using sunlight as energy source. Achieving effective photocatalytic systems necessitates a comprehensive understanding of the underlying mechanisms and factors that control the reactivity. This review underscores the growing interest in utilizing bioinspired artificial vesicles to develop compartmentalized photocatalytic systems. Herein, we summarize different scaffolds employed to develop artificial vesicles, and discuss recent examples where such systems are used to study pivotal processes of artificial photosynthesis, including light harvesting, charge transfer, and fuel production. These systems offer valuable lessons regarding the appropriate choice of membrane scaffolds, reaction partners and spatial arrangement to enhance photocatalytic activity, selectivity and efficiency. These studies highlight the pivotal role of the membrane to increase the stability of the immobilized reaction partners, generate a suitable local environment, and force proximity between electron donor and acceptor molecules (or catalysts and photosensitizers) to increase electron transfer rates. Overall, these findings pave the way for further development of bioinspired photocatalytic systems for compartmentalized artificial photosynthesis.
Collapse
Affiliation(s)
- Laura Velasco-Garcia
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda dels Països Catalans, 16, 43007, Tarragona, Spain
- Department of Physical and Inorganic Chemistry, University Rovira i Virgili (URV), C/ Marcel.lí Domingo, 1, 43007, Tarragona, Spain
| | - Carla Casadevall
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda dels Països Catalans, 16, 43007, Tarragona, Spain.
- Department of Physical and Inorganic Chemistry, University Rovira i Virgili (URV), C/ Marcel.lí Domingo, 1, 43007, Tarragona, Spain.
| |
Collapse
|
4
|
Cardenas-Morcoso D, Bansal D, Heiderscheid M, Audinot JN, Guillot J, Boscher ND. A Polymer-Derived Co(Fe)O x Oxygen Evolution Catalyst Benefiting from the Oxidative Dehydrogenative Coupling of Cobalt Porphyrins. ACS Catal 2023; 13:15182-15193. [PMID: 38026816 PMCID: PMC10660665 DOI: 10.1021/acscatal.3c02940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/11/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Thin films of cobalt porphyrin conjugated polymers bearing different substituents are prepared by oxidative chemical vapor deposition (oCVD) and investigated as heterogeneous electrocatalysts for the oxygen evolution reaction (OER). Interestingly, the electrocatalytic activity originates from polymer-derived, highly transparent Co(Fe)Ox species formed under operational alkaline conditions. Structural, compositional, electrical, and electrochemical characterizations reveal that the newly formed active catalyst greatly benefited from both the polymeric conformation of the porphyrin-based thin film and the inclusion of the iron-based species originating from the oCVD reaction. High-resolution mass spectrometry analyses combined with density functional theory (DFT) calculations showed that a close relationship exists between the porphyrin substituent, the extension of the π-conjugated system cobalt porphyrin conjugated polymer, and the dynamics of the polymer conversion leading to catalytically active Co(Fe)Ox species. This work evidences the precatalytic role of cobalt porphyrin conjugated polymers and uncovers the benefit of extended π-conjugation of the molecular matrix and iron inclusion on the formation and performance of the true active catalyst.
Collapse
Affiliation(s)
- Drialys Cardenas-Morcoso
- Materials Research and Technology
Department, Luxembourg Institute of Science
and Technology, 28 Avenue des Hautes-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg
| | - Deepak Bansal
- Materials Research and Technology
Department, Luxembourg Institute of Science
and Technology, 28 Avenue des Hautes-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg
| | - Max Heiderscheid
- Materials Research and Technology
Department, Luxembourg Institute of Science
and Technology, 28 Avenue des Hautes-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg
| | - Jean-Nicolas Audinot
- Materials Research and Technology
Department, Luxembourg Institute of Science
and Technology, 28 Avenue des Hautes-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg
| | - Jérôme Guillot
- Materials Research and Technology
Department, Luxembourg Institute of Science
and Technology, 28 Avenue des Hautes-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg
| | - Nicolas D. Boscher
- Materials Research and Technology
Department, Luxembourg Institute of Science
and Technology, 28 Avenue des Hautes-Fourneaux, Esch-sur-Alzette L-4362, Luxembourg
| |
Collapse
|
5
|
Rosa-Pardo I, Zhu D, Cortés-Villena A, Prato M, De Trizio L, Manna L, Galian RE, Pérez-Prieto J. The Dark Side of Lead-Free Metal Halide Nanocrystals: Substituent-Modulated Photocatalytic Activity in Benzyl Bromide Reduction. ACS ENERGY LETTERS 2023; 8:2789-2798. [PMID: 37324538 PMCID: PMC10262690 DOI: 10.1021/acsenergylett.3c00771] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
We illustrate here the high photocatalytic activity of sustainable lead-free metal halide nanocrystals (NCs), namely, Cs3Sb2Br9 NCs, in the reduction of p-substituted benzyl bromides in the absence of a cocatalyst. The electronic properties of the benzyl bromide substituents and the substrate affinity to the NC surface determine the selectivity in C-C homocoupling under visible light irradiation. This photocatalyst can be reused for at least three cycles and preserves its good performance with a turnover number of ca. 105,000.
Collapse
Affiliation(s)
- Ignacio Rosa-Pardo
- Institute
of Molecular Science, University of Valencia, c/Cat. José Beltrán
2, Paterna, 46980 Valencia, Spain
| | - Dongxu Zhu
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Alejandro Cortés-Villena
- Institute
of Molecular Science, University of Valencia, c/Cat. José Beltrán
2, Paterna, 46980 Valencia, Spain
| | - Mirko Prato
- Materials
Characterization Facility, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Luca De Trizio
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Liberato Manna
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Raquel E. Galian
- Institute
of Molecular Science, University of Valencia, c/Cat. José Beltrán
2, Paterna, 46980 Valencia, Spain
| | - Julia Pérez-Prieto
- Institute
of Molecular Science, University of Valencia, c/Cat. José Beltrán
2, Paterna, 46980 Valencia, Spain
| |
Collapse
|
6
|
Bikas R, Shaghaghi Z, Heshmati-Sharabiani Y, Heydari N, Lis T. Water oxidation reaction in the presence of a dinuclear Mn(II)-semicarbohydrazone coordination compound. PHOTOSYNTHESIS RESEARCH 2022; 154:383-395. [PMID: 35870060 DOI: 10.1007/s11120-022-00939-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Water splitting, producing of oxygen, and hydrogen molecules, is an essential reaction for clean energy resources and is one of the challenging reactions for artificial photosynthesis. The Mn4Ca cluster in photosystem II (PS-II) is responsible for water oxidation in natural photosynthesis. Due to this, water oxidation reaction by Mn coordination compounds is vital for mimicking the active core of the oxygen-evolving complex in PS-II. Here, a new dinuclear Mn(II)-semicarbohydrazone coordination compound, [Mn(HL)(µ-N3)Cl]2 (1), was synthesized and characterized by various methods. The structure of compound 1 was determined by single crystal X-ray analysis, which revealed the Mn(II) ions have distorted octahedral geometry as (MnN4OCl). This geometry is created by coordinating of oxygen and two nitrogen donor atoms from semicarbohydrazone ligand, two nitrogen atoms from azide bridges, and chloride anion. Compound 1 was used as a catalyst for electrochemical water oxidation, and the surface of the electrode after the reaction was investigated by scanning electron microscopy, energy dispersive spectrometry, and powder X-ray diffraction analyses. Linear sweep voltammetry (LSV) experiments revealed that the electrode containing 1 shows high activity for chemical water oxidation with an electrochemical overpotential as low as 377 mV. Although our findings showed that the carbon paste electrode in the presence of 1 is an efficient electrode for water oxidation, it could not withstand water oxidation catalysis under bulk electrolysis and finally converted to Mn oxide nanoparticles which were active for water oxidation along with compound 1.
Collapse
Affiliation(s)
- Rahman Bikas
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, 34148-96818, Iran.
| | - Zohreh Shaghaghi
- Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, 5375171379, Iran
| | - Yahya Heshmati-Sharabiani
- Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, 5375171379, Iran
| | - Neda Heydari
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran
| | - Tadeusz Lis
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
7
|
Natali M, Sartorel A, Ruggi A. Beyond Water Oxidation: Hybrid, Molecular-Based Photoanodes for the Production of Value-Added Organics. Front Chem 2022; 10:907510. [PMID: 35692692 PMCID: PMC9175021 DOI: 10.3389/fchem.2022.907510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
The political and environmental problems related to the massive use of fossil fuels prompted researchers to develop alternative strategies to obtain green and renewable fuels such as hydrogen. The light-driven water splitting process (i.e., the photochemical decomposition of water into hydrogen and oxygen) is one of the most investigated strategies to achieve this goal. However, the water oxidation reaction still constitutes a formidable challenge because of its kinetic and thermodynamic requirements. Recent research efforts have been focused on the exploration of alternative and more favorable oxidation processes, such as the oxidation of organic substrates, to obtain value-added products in addition to solar fuels. In this mini-review, some of the most intriguing and recent results are presented. In particular, attention is directed on hybrid photoanodes comprising molecular light-absorbing moieties (sensitizers) and catalysts grafted onto either mesoporous semiconductors or conductors. Such systems have been exploited so far for the photoelectrochemical oxidation of alcohols to aldehydes in the presence of suitable co-catalysts. Challenges and future perspectives are also briefly discussed, with special focus on the application of such hybrid molecular-based systems to more challenging reactions, such as the activation of C–H bonds.
Collapse
Affiliation(s)
- Mirco Natali
- Department of Chemical Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Ferrara, Italy
- *Correspondence: Mirco Natali, ; Andrea Sartorel, ; Albert Ruggi,
| | - Andrea Sartorel
- Dipartimento di Scienze Chimiche, Università di Padova, Padova, Italy
- *Correspondence: Mirco Natali, ; Andrea Sartorel, ; Albert Ruggi,
| | - Albert Ruggi
- Département de Chimie, Université de Fribourg, Fribourg, Switzerland
- *Correspondence: Mirco Natali, ; Andrea Sartorel, ; Albert Ruggi,
| |
Collapse
|
8
|
Li L, Das B, Rahaman A, Shatskiy A, Ye F, Cheng P, Yuan C, Yang Z, Verho O, Kärkäs MD, Dutta J, Weng TC, Åkermark B. Ruthenium containing molecular electrocatalyst on glassy carbon for electrochemical water splitting. Dalton Trans 2022; 51:7957-7965. [PMID: 35546321 DOI: 10.1039/d2dt00824f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Electrochemical water splitting constitutes one of the most promising strategies for converting water into hydrogen-based fuels, and this technology is predicted to play a key role in the transition towards a carbon-neutral energy economy. To enable the design of cost-effective electrolysis cells based on this technology, new and more efficient anodes with augmented water splitting activity and stability will be required. Herein, we report an active molecular Ru-based catalyst for electrochemically-driven water oxidation (overpotential of ∼395 mV at pH 7 phosphate buffer) and two simple methods for preparing anodes by attaching this catalyst onto glassy carbon through multi-walled carbon nanotubes to improve stability as well as reactivity. The anodes modified with the molecular catalyst were characterized by a broad toolbox of microscopy and spectroscopy techniques, and interestingly no RuO2 formation was detected during electrocatalysis over 4 h. These results demonstrate that the herein presented strategy can be used to prepare anodes that rival the performance of state-of-the-art metal oxide anodes.
Collapse
Affiliation(s)
- Lin Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China. .,Department of Organic Chemistry, Arrhenius Laboratory Stockholm University, Svante Arrhenius v-g 16C, 10691 Stockholm, Sweden. .,Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Biswanath Das
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University, Svante Arrhenius v-g 16C, 10691 Stockholm, Sweden.
| | - Ahibur Rahaman
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University, Svante Arrhenius v-g 16C, 10691 Stockholm, Sweden.
| | - Andrey Shatskiy
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Fei Ye
- Department of Applied Physics, Functional Materials, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Peihong Cheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Chunze Yuan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China. .,Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Zhiqi Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Oscar Verho
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University, Svante Arrhenius v-g 16C, 10691 Stockholm, Sweden.
| | - Markus D Kärkäs
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Joydeep Dutta
- Department of Applied Physics, Functional Materials, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China. .,Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Björn Åkermark
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University, Svante Arrhenius v-g 16C, 10691 Stockholm, Sweden.
| |
Collapse
|