• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643695)   Today's Articles (68)   Subscriber (50611)
For: Portuguez-maurtua M, Arumi JL, Lagos O, Stehr A, Montalvo Arquiñigo N. Filling Gaps in Daily Precipitation Series Using Regression and Machine Learning in Inter-Andean Watersheds. Water 2022;14:1799. [DOI: 10.3390/w14111799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Number Cited by Other Article(s)
1
Elsayed A, Rixon S, Levison J, Binns A, Goel P. Application of classification machine learning algorithms for characterizing nutrient transport in a clay plain agricultural watershed. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023;345:118924. [PMID: 37678017 DOI: 10.1016/j.jenvman.2023.118924] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
2
Han H, Kim B, Kim K, Kim D, Kim HS. Machine learning approach for the estimation of missing precipitation data: a case study of South Korea. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023;88:556-571. [PMID: 37578874 PMCID: wst_2023_237 DOI: 10.2166/wst.2023.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA