1
|
Hao A, Kobayashi S, Chen F, Yan Z, Torii T, Zhao M, Iseri Y. Exploring invertebrate indicators of ecosystem health by focusing on the flow transitional zones in a large, shallow eutrophic lake. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82717-82731. [PMID: 37328726 PMCID: PMC10349724 DOI: 10.1007/s11356-023-28045-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023]
Abstract
The river-lake transitional zone provides a unique environment for the biological community and can reduce pollution inputs in lake ecosystems from their catchments. To explore environmental conditions with high purification potential in Lake Taihu and indicator species, we examined the river-to-lake changes in water and sediment quality and benthic invertebrate communities in the transitional zone of four regions. The spatial variations in the environment and invertebrate community observed in this study followed the previously reported patterns in Taihu; the northern and western regions were characterized by higher nutrient concentrations in water, higher heavy metal concentrations in sediment, and higher total invertebrate density and biomass dominated by pollution-tolerant oligochaetes and chironomids. Although nutrient concentrations were low and transparency was high in the eastern region, the taxon richness was the lowest there, which disagreed with the previous findings and might be due to a poor cover of macrophytes in this study. The river-to-lake change was large in the southern region for water quality and the invertebrate community. Water circulation induced by strong wind-wave actions in the lake sites of the southern region is assumed to have promoted photosynthetic and nutrient uptake activities and favored invertebrates that require well-aerated conditions such as polychaetes and burrowing crustaceans. Invertebrates usually adapted to brackish and saline environments are suggested to be indicators of a well-circulated environment with active biogeochemical processes and a less eutrophic state in Taihu, and wind-wave actions are key to maintaining such a community and natural purifying processes.
Collapse
Affiliation(s)
- Aimin Hao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Sohei Kobayashi
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| | - Fangbo Chen
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Zhixiong Yan
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Takaaki Torii
- Laboratory of Molecular Reproductive Biology, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka City, Shizuoka, Japan
- Institute of Environmental Ecology, Environmental Ecology Division, Idea Consultants Inc., Yaizu City, Shizuoka, Japan
| | - Min Zhao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Yasushi Iseri
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
2
|
Improvement of Water Quality by Light-Emitting Diode Illumination at the Bottom of a Field Experimental Pond. WATER 2022. [DOI: 10.3390/w14152310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Remediation of water quality by stimulating algal photosynthesis using light-emitting diodes (LEDs) has attracted attention, but few studies have examined this in outdoor freshwater environments. To understand the effects of LED illumination on water quality, the dissolved oxygen (DO), temperature, pH, and electric conductivity were monitored over 5 months in three depressions with or without a red/blue LED light at the bottom of an experimental pond. The effects of the blue LED on water quality were evident in the period with less rainfall after the change of water quality to an equilibrium state; DO and pH were higher, and EC was lower for the blue LED than for the control. The diel changes of these variables were also lower for the blue LED. The effects of the red LED on DO and pH were also evident, but to a lesser extent compared to those of the blue LED. A vertical mixing of water associated with a nighttime cooling of the surface water was suggested by a rapid DO increase after a temperature decrease in the control. Such internal water circulation and an inflow of water after rainfall might have obscured the LED effects in the rainy period. The bottom water of the blue LED had a higher density and species richness of phytoplankton than that of the control at the end of the experiment. A lower density of phytoplankton and higher nutrient concentrations in the red LED might have been due to a higher density and feeding activity by zooplankton. Our results confirmed the applicability of LED illumination in stimulating algal photosynthesis, and in improving the oxygen condition of the bottom water in freshwater ponds.
Collapse
|