1
|
Drought Assessment in the São Francisco River Basin Using Satellite-Based and Ground-Based Indices. REMOTE SENSING 2021. [DOI: 10.3390/rs13193921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The São Francisco River Basin (SFRB) plays a key role for the agricultural and hydropower sectors in Northeast Brazil (NEB). Historically, in the low part of the SFRB, people have to cope with strong periods of drought. However, there are incipient signs of increasing drought conditions in the upper and middle parts of the SFRB, where its main reservoirs (i.e., Três Marias, Sobradinho, and Luiz Gonzaga) and croplands are located. Therefore, the assessment of the impacts of extreme drought events in the SFRB is of vital importance to develop appropriate drought mitigation strategies. These events are characterized by widespread and persistent dry conditions with long-term impacts on water resources and rain-fed agriculture. The purpose of this study is to provide a comprehensive evaluation of extreme drought events in terms of occurrence, persistence, spatial extent, severity, and impacts on streamflow and soil moisture over different time windows between 1980 and 2020. The Standardized Precipitation-Evapotranspiration Index (SPEI) and Standardized Streamflow Index (SSI) at 3- and 12-month time scales derived from ground data were used as benchmark drought indices. The self-calibrating Palmer Drought Severity Index (scPDSI) and the Soil Moisture and Ocean Salinity-based Soil Water Deficit Index (SWDIS) were used to assess the agricultural drought. The Water Storage Deficit Index (WSDI) and the Groundwater Drought Index (GGDI) both derived from the Gravity Recovery and Climate Experiment (GRACE) were used to assess the hydrological drought. The SWDISa and WSDI showed the best performance in assessing agricultural and hydrological droughts across the whole SFRB. A drying trend at an annual time scale in the middle and south regions of the SFRB was evidenced. An expansion of the area under drought conditions was observed only during the southern hemisphere winter months (i.e., JJA). A marked depletion of groundwater levels concurrent with an increase in soil moisture content was observed during the most severe drought conditions, indicating an intensification of groundwater abstraction for irrigation. These results could be useful to guide social, economic, and water resource policy decision-making processes.
Collapse
|
2
|
Appraisal of SMAP Operational Soil Moisture Product from a Global Perspective. REMOTE SENSING 2020. [DOI: 10.3390/rs12121977] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Space-borne soil moisture (SM) satellite products such as those available from Soil Moisture Active Passive (SMAP) offer unique opportunities for global and frequent monitoring of SM and also to understand its spatiotemporal variability. The present study investigates the performance of the SMAP L4 SM product at selected experimental sites across four continents, namely North America, Europe, Asia and Australia. This product provides global scale SM estimates at 9 km × 9 km spatial resolution at daily intervals. For the product evaluation, co-orbital in situ SM measurements were used, acquired at 14 test sites in North America, Europe, and Australia belonging to the International Soil Moisture Network (ISMN) and local networks in India. The satellite SM estimates of up to 0–5 cm soil layer were compared against collocated ground measurements using a series of statistical scores. Overall, the best performance of the SMAP product was found in North America (RMSE = 0.05 m3/m3) followed by Australia (RMSE = 0.08 m3/m3), Asia (RMSE = 0.09 m3/m3) and Europe (RMSE = 0.14 m3/m3). Our findings provide important insights into the spatiotemporal variability of the specific operational SM product in different ecosystems and environments. This study also furnishes an independent verification of this global product, which is of international interest given its suitability for a wide range of practical and research applications.
Collapse
|
3
|
Satellite Soil Moisture for Agricultural Drought Monitoring: Assessment of SMAP-Derived Soil Water Deficit Index in Xiang River Basin, China. REMOTE SENSING 2019. [DOI: 10.3390/rs11030362] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Agricultural drought can have long-lasting and harmful impacts on both the ecosystem and economy. Therefore, it is important to monitor and predict agricultural drought accurately. Soil moisture is the key variable to define the agricultural drought index. However, in situ soil moisture observations are inaccessible in many areas of the world. Remote sensing techniques enrich the surface soil moisture observations at different tempo-spatial resolutions. In this study, the Level 2 L-band radiometer soil moisture dataset was used to estimate the Soil Water Deficit Index (SWDI). The Soil Moisture Active Passive (SMAP) dataset was evaluated with the soil moisture dataset obtained from the China Land Soil Moisture Data Assimilation System (CLSMDAS). The SMAP-derived SWDI (SMAP_SWDI) was compared with the atmospheric water deficit (AWD) calculated with precipitation and evapotranspiration from meteorological stations. Drought monitoring and comparison were accomplished at a weekly scale for the growing season (April to November) from 2015 to 2017. The results were as follows: (1) in terms of Pearson correlation coefficients (R-value) between SMAP and CLSMDAS, around 70% performed well and only 10% performed poorly at the grid scale, and the R-value was 0.62 for the whole basin; (2) severe droughts mainly occurred from mid-June to the end of September from 2015 to 2017; (3) severe droughts were detected in the southern and northeastern Xiang River Basin in mid-May of 2015, and in the northern basin in early August of 2016 and end of November 2017; (4) the values of percentage of drought weeks gradually decreased from 2015 to 2017, and increased from the northeast to the southwest of the basin in 2015 and 2016; and (5) the average value of R and probability of detection between SMAP_SWDI and AWD were 0.6 and 0.79, respectively. These results show SMAP has acceptable accuracy and good performance for drought monitoring in the Xiang River Basin.
Collapse
|
4
|
Assessment of the SMAP-Derived Soil Water Deficit Index (SWDI-SMAP) as an Agricultural Drought Index in China. REMOTE SENSING 2018. [DOI: 10.3390/rs10081302] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
China is frequently subjected to local and regional drought disasters, and thus, drought monitoring is vital. Drought assessments based on available surface soil moisture (SM) can account for soil water deficit directly. Microwave remote sensing techniques enable the estimation of global SM with a high temporal resolution. At present, the evaluation of Soil Moisture Active Passive (SMAP) SM products is inadequate, and L-band microwave data have not been applied to agricultural drought monitoring throughout China. In this study, first, we provide a pivotal evaluation of the SMAP L3 radiometer-derived SM product using in situ observation data throughout China, to assist in subsequent drought assessment, and then the SMAP-Derived Soil Water Deficit Index (SWDI-SMAP) is compared with the atmospheric water deficit (AWD) and vegetation health index (VHI). It is found that the SMAP can obtain SM with relatively high accuracy and the SWDI-SMAP has a good overall performance on drought monitoring. Relatively good performance of SWDI-SMAP is shown, except in some mountain regions; the SWDI-SMAP generally performs better in the north than in the south for less dry bias, although better performance of SMAP SM based on the R is shown in the south than in the north; differences between the SWDI-SMAP and VHI are mainly shown in areas without vegetation or those containing drought-resistant plants. In summary, the SWDI-SMAP shows great application potential in drought monitoring.
Collapse
|
5
|
Assessment of SM2RAIN-Derived and State-of-the-Art Satellite Rainfall Products over Northeastern Brazil. REMOTE SENSING 2018. [DOI: 10.3390/rs10071093] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Temporal and Spatial Comparison of Agricultural Drought Indices from Moderate Resolution Satellite Soil Moisture Data over Northwest Spain. REMOTE SENSING 2017. [DOI: 10.3390/rs9111168] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Spatio-Temporal Patterns of the 2010–2015 Extreme Hydrological Drought across the Central Andes, Argentina. WATER 2017. [DOI: 10.3390/w9090652] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|