1
|
Fabre C, Sonke JE, Tananaev N, Teisserenc R. Organic carbon and mercury exports from pan-Arctic rivers in a thawing permafrost context - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176713. [PMID: 39389136 DOI: 10.1016/j.scitotenv.2024.176713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/06/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Climate change affects more than elsewhere the northern circumpolar permafrost region. This zone comprises large rivers flowing mainly to the Arctic Ocean, delivering about 10 % of the global riverine water flux. These pan-Arctic Rivers drive the dynamics of northern organic carbon (OC) and mercury (Hg) cycling. Permafrost degradation may release substantial amounts of OC and Hg, with potential regional and global impacts. In this review, we summarise the main findings in the last three decades about the role of the pan-Arctic Rivers in OC and Hg cycling and the effect of climate change on these dynamics. Total DOC and POC fluxes delivered by the pan-Arctic rivers presently reach 34.4 ± 1.2 TgC·yr-1 and 7.9 ± 0.5 TgC·yr-1, while the export of Hg reaches 38.9 ± 1.7 Mg·yr-1. This review highlights future challenges for the scientific community in evaluating spatial and temporal dynamics of the processes involved in OC and Hg cycling in permafrost-affected areas. Permafrost thawing could lead to greater fluxes of OC and Hg with ill-known resulting risks for food chains. Within this context, efforts should be made to study OC effects on Hg methylation. Moreover, assessing the spatial variability of OC and Hg mobilisation and transport within the pan-Arctic watersheds may help understand the future OC and Hg cycling dynamics in the northern circumpolar permafrost region.
Collapse
Affiliation(s)
- Clément Fabre
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Avenue de l'Agrobiopole, 31326 Auzeville-Tolosane, France.
| | - Jeroen E Sonke
- Geosciences Environnement Toulouse, CNRS/IRD/CNES/Université Toulouse III, 14 avenue Edouard Belin, 31400 Toulouse, France
| | - Nikita Tananaev
- Melnikov Permafrost Institute, SB RAS, Yakutsk 677010, Russia
| | - Roman Teisserenc
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Avenue de l'Agrobiopole, 31326 Auzeville-Tolosane, France
| |
Collapse
|
2
|
Late Summer Water Sources in Rivers and Lakes of the Upper Yana River Basin, Northern Eurasia, Inferred from Hydrological Tracer Data. HYDROLOGY 2022. [DOI: 10.3390/hydrology9020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Major ions, stable isotopes, and trace elements, including rare earth elements (REEs), are used as natural tracers in the qualitative assessment of potential water sources in lakes and rivers of the upper Yana River basin, between Verkhoyansk and Chersky Ranges, during the late summer period. Three distinct regions were sampled, and a dominant water source in each region was qualitatively inferred from water chemistry data. The REE distribution pattern was found to be highly regional and controlled by pH and carbonate contents. Mountain headwater stream at the Verkhoyansk Range north slope, the Dulgalakh River, shows an input from a mixture of shallow groundwater and icing meltwater, with a depleted isotopic signature (δ18O below –21‰), d-excess (dex = δ2H − 8·δ18O) above 18, enrichment in Mg and Sr, and depletion in heavy REEs. The Derbeke Depression lakes and streams are fed by rainfall having ultra-low total dissolved solids (TDS) content, below 25 mg/L, and a convex-up REE pattern. In a medium mountainous river at the Chersky Range flank, the Dogdo River, leaching through fissured Jurassic carbonates is a dominant runoff pathway. Riverine water is heavily depleted in light REEs, but enriched in Mo, Rb, Sb,W and U. In the Dulgalakh River water, high positive Sm and Gd anomalies were observed, attributed either to local geology (greenshists), historical mining legacy, or contemporary winter road operations.
Collapse
|
3
|
Validation of Permafrost Active Layer Estimates from Airborne SAR Observations. REMOTE SENSING 2021. [DOI: 10.3390/rs13152876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In permafrost regions, active layer thickness (ALT) observations measure the effects of climate change and predict hydrologic and elemental cycling. Often, ALT is measured through direct ground-based measurements. Recently, synthetic aperture radar (SAR) measurements from airborne platforms have emerged as a method for observing seasonal thaw subsidence, soil moisture, and ALT in permafrost regions. This study validates airborne SAR-derived ALT estimates in three regions of Alaska, USA using calibrated ground penetrating radar (GPR) geophysical data. The remotely sensed ALT estimates matched the field observations within uncertainty for 79% of locations. The average uncertainty for the GPR-derived ALT validation dataset was 0.14 m while the average uncertainty for the SAR-derived ALT in pixels coincident with GPR data was 0.19 m. In the region near Utqiaġvik, the remotely sensed ALT appeared slightly larger than field observations while in the Yukon-Kuskokwim Delta region, the remotely sensed ALT appeared slightly smaller than field observations. In the northern foothills of the Brooks Range, near Toolik Lake, there was minimal bias between the field data and remotely sensed estimates. These findings suggest that airborne SAR-derived ALT estimates compare well with in situ probing and GPR, making SAR an effective tool to monitor permafrost measurements.
Collapse
|
4
|
Abstract
The Arctic region is the most sensitive region to climate change. Hydrological models are fundamental tools for climate change impact assessment. However, due to the extreme weather conditions, specific hydrological process, and data acquisition challenges in the Arctic, it is crucial to select suitable hydrological model(s) for this region. In this paper, a comprehensive review and comparison of different models is conducted based on recently available studies. The functionality, limitations, and suitability of the potential hydrological models for the Arctic hydrological process are analyzed, including: (1) The surface hydrological models Topoflow, DMHS (deterministic modeling hydrological system), HBV (Hydrologiska Byråns Vattenbalansavdelning), SWAT (soil and water assessment tool), WaSiM (water balance simulation model), ECOMAG (ecological model for applied geophysics), and CRHM (cold regions hydrological model); and (2) the cryo-hydrogeological models ATS (arctic terrestrial simulator), CryoGrid 3, GEOtop, SUTRA-ICE (ice variant of the existing saturated/unsaturated transport model), and PFLOTRAN-ICE (ice variant of the existing massively parallel subsurface flow and reactive transport model). The review finds that Topoflow, HBV, SWAT, ECOMAG, and CRHM are suitable for studying surface hydrology rather than other processes in permafrost environments, whereas DMHS, WaSiM, and the cryo-hydrogeological models have higher capacities for subsurface hydrology, since they take into account the three phase changes of water in the near-surface soil. Of the cryo-hydrogeological models reviewed here, GEOtop, SUTRA-ICE, and PFLOTRAN-ICE are found to be suitable for small-scale catchments, whereas ATS and CryoGrid 3 are potentially suitable for large-scale catchments. Especially, ATS and GEOtop are the first tools that couple surface/subsurface permafrost thermal hydrology. If the accuracy of simulating the active layer dynamics is targeted, DMHS, ATS, GEOtop, and PFLOTRAN-ICE are potential tools compared to the other models. Further, data acquisition is a challenging task for cryo-hydrogeological models due to the complex boundary conditions when compared to the surface hydrological models HBV, SWAT, and CRHM, and the cryo-hydrogeological models are more difficult for non-expert users and more expensive to run compared to other models.
Collapse
|
5
|
Abstract
Permafrost hydrology is an emerging discipline, attracting increasing attention as the Arctic region is undergoing rapid change. However, the research domain of this discipline had never been explicitly formulated. Both ‘permafrost’ and ‘hydrology’ yield differing meanings across languages and scientific domains; hence, ‘permafrost hydrology’ serves as an example of cognitive linguistic relativity. From this point of view, the English and Russian usages of this term are explained. The differing views of permafrost as either an ecosystem class or a geographical region, and hydrology as a discipline concerned with either landscapes or generic water bodies, maintain a language-specific touch of the research in this field. Responding to a current lack of a unified approach, we propose a universal process-based definition of permafrost hydrology, based on a specific process assemblage, specific to permafrost regions and including: (1) Unconfined groundwater surface dynamics related to the active layer development; (2) water migration in the soil matrix, driven by phase transitions in the freezing active layer; and (3) transient water storage in both surface and subsurface compartments, redistributing runoff on various time scales. This definition fills the gap in existing scientific vocabulary. Other definitions from the field are revisited and discussed. The future of permafrost hydrology research is discussed, where the most important results would emerge at the interface between permafrost hydrology, periglacial geomorphology, and geocryology.
Collapse
|
6
|
Fabre C, Sauvage S, Tananaev N, Noël GE, Teisserenc R, Probst JL, Pérez JMS. Assessment of sediment and organic carbon exports into the Arctic ocean: The case of the Yenisei River basin. WATER RESEARCH 2019; 158:118-135. [PMID: 31022529 DOI: 10.1016/j.watres.2019.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/30/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
The export of organic carbon export by the rivers to the oceans either as particulate organic carbon (POC) or dissolved organic carbon (DOC) is very sensitive to climate change especially in permafrost affected catchments where soils are very rich in organic carbon. With global warming, organic carbon export in both forms is expected to increase in Arctic regions. It should affect contemporary biogeochemical cycles in rivers and oceans and therefore modify the whole food web. This study tries to understand complex processes involved in sediment, POC and DOC riverine transport in the Yenisei River basin and to quantify their respective fluxes at the river outlet. The SWAT (Soil and Water Assessment Tool) hydrological model is used in this study to simulate water and suspended sediment transfers in the largest Arctic river. POC and DOC export have been quantified with empirical models, adapted from literature for the study case. First, the hydrological model has been calibrated and validated at a daily time step for the 2003-2008 and the 2009-2016 periods respectively, and its output has been compared with field data for water and sediment fluxes. Based on conceptualization of transfer processes, calibration on climate and soil properties has been performed in order to correctly represent hydrology and sediment transfer in permafrost basins. Second, calibration of empirical models for DOC/POC transport have been performed by comparing their output with field data, available from 2003 to 2016. Our study reveals that SWAT is capable of correctly representing hydrology, sediment transfer, POC and DOC fluxes and their spatial distribution at a daily timescale, and outlines the links between these fluxes and permafrost features. Our simulation effort results in specific sediment, POC and DOC fluxes of 2.97 t km-2 yr-1, 0.13 t km-2 yr-1 and 1.14 t km-2 yr-1 for the period 2003-2016 which are in the range of previous estimates. About 60% of the total fluxes of sediment, DOC and POC to the Arctic Ocean are exported during the two months of the freshet. Spatial analysis show that permafrost-free areas have returned higher daily organic carbon export than permafrost affected zones, highlighting the thawing permafrost effect on carbon cycle in climate change feedback.
Collapse
Affiliation(s)
- C Fabre
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - S Sauvage
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - N Tananaev
- P.I. Melnikov Permafrost Institute, SB RAS, 677010, Merzlotnaya Str. 36, Yakutsk, Russia; Ugra Research Institute of Information Technologies, 628011, Khanty-Mansiysk Mira Str. 151, Russia
| | | | - R Teisserenc
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - J L Probst
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | | |
Collapse
|
7
|
A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference. WATER 2017. [DOI: 10.3390/w10010006] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|