1
|
Petreski T, Varda L, Gradišnik L, Maver U, Bevc S. Renal Proximal Tubular Epithelial Cells: From Harvesting to Use in Studies. Nephron Clin Pract 2023; 147:650-654. [PMID: 37423209 DOI: 10.1159/000531291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/01/2023] [Indexed: 07/11/2023] Open
Abstract
The kidneys are the body's main excretion organ with several additional functions, and the nephron represents their central structural unit. It is comprised of endothelial, mesangial, glomerular, and tubular epithelial cells, as well as podocytes. Treatment of acute kidney injury or chronic kidney disease (CKD) is complex due to broad etiopathogenic mechanisms and limited regeneration potential as kidney cells finish their differentiation after 34 weeks of gestation. Despite the ever-increasing prevalence of CKD, very limited treatment modalities are available. The medical community should therefore strive to improve existing treatments and develop new ones. Furthermore, polypharmacy is present in most CKD patients, while current pharmacologic study designs lack effectiveness in predicting potential drug-drug interactions and the resulting clinically relevant complications. An opportunity for addressing these issues lies in developing in vitro cell models based on patient-derived renal cells. Currently, several protocols have been described for isolating desired kidney cells, of which the most isolated are the proximal tubular epithelial cells. These play a significant role in water homeostasis, acid-base control, reabsorption of compounds, and secretion of xenobiotics and endogenous metabolites. When developing a protocol for the isolation and culture of such cells, one must focus on several steps. These include harvesting cells from biopsy specimens or after nephrectomies, using different digestion enzymes and culture mediums to facilitate the selective growth of only the desired cells. The literature reports several existing models, from simple 2D in vitro cultures to more complex ones created with bioengineering methods, such as kidney-on-a-chip models. While their creation and use depend on the target research, one should consider factors such as equipment, cost, and, even more importantly, source tissue quality and availability.
Collapse
Affiliation(s)
- Tadej Petreski
- Department of Nephrology, University Medical Centre Maribor, Maribor, Slovenia
| | - Luka Varda
- Department of Dialysis, University Medical Centre Maribor, Maribor, Slovenia
| | - Lidija Gradišnik
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Uros Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Sebastjan Bevc
- Department of Nephrology, University Medical Centre Maribor, Maribor, Slovenia
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
2
|
Brito MDF, Torre C, Silva-Lima B. Scientific Advances in Diabetes: The Impact of the Innovative Medicines Initiative. Front Med (Lausanne) 2021; 8:688438. [PMID: 34295913 PMCID: PMC8290522 DOI: 10.3389/fmed.2021.688438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/02/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetes Mellitus is one of the World Health Organization's priority diseases under research by the first and second programmes of Innovative Medicines Initiative, with the acronyms IMI1 and IMI2, respectively. Up to October of 2019, 13 projects were funded by IMI for Diabetes & Metabolic disorders, namely SUMMIT, IMIDIA, DIRECT, StemBANCC, EMIF, EBiSC, INNODIA, RHAPSODY, BEAT-DKD, LITMUS, Hypo-RESOLVE, IM2PACT, and CARDIATEAM. In general, a total of €447 249 438 was spent by IMI in the area of Diabetes. In order to prompt a better integration of achievements between the different projects, we perform a literature review and used three data sources, namely the official project's websites, the contact with the project's coordinators and co-coordinator, and the CORDIS database. From the 662 citations identified, 185 were included. The data collected were integrated into the objectives proposed for the four IMI2 program research axes: (1) target and biomarker identification, (2) innovative clinical trials paradigms, (3) innovative medicines, and (4) patient-tailored adherence programmes. The IMI funded projects identified new biomarkers, medical and research tools, determinants of inter-individual variability, relevant pathways, clinical trial designs, clinical endpoints, therapeutic targets and concepts, pharmacologic agents, large-scale production strategies, and patient-centered predictive models for diabetes and its complications. Taking into account the scientific data produced, we provided a joint vision with strategies for integrating personalized medicine into healthcare practice. The major limitations of this article were the large gap of data in the libraries on the official project websites and even the Cordis database was not complete and up to date.
Collapse
Affiliation(s)
| | - Carla Torre
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science-Research Institute for Medicines (iMED.ULisboa), Lisbon, Portugal
| | - Beatriz Silva-Lima
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science-Research Institute for Medicines (iMED.ULisboa), Lisbon, Portugal
| |
Collapse
|
3
|
Mihevc M, Petreski T, Maver U, Bevc S. Renal proximal tubular epithelial cells: review of isolation, characterization, and culturing techniques. Mol Biol Rep 2020; 47:9865-9882. [PMID: 33170426 DOI: 10.1007/s11033-020-05977-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022]
Abstract
The kidney is a complex organ, comprised primarily of glomerular, tubular, mesangial, and endothelial cells, and podocytes. The fact that renal cells are terminally differentiated at 34 weeks of gestation is the main obstacle in regeneration and treatment of acute kidney injury or chronic kidney disease. Furthermore, the number of chronic kidney disease patients is ever increasing and with it the medical community should aim to improve existing and develop new methods of renal replacement therapy. On the other hand, as polypharmacy is on the rise, thought should be given into developing new ways of testing drug safety. A possible way to tackle these issues is with isolation and culture of renal cells. Several protocols are currently described to isolate the desired cells, of which the most isolated are the proximal tubular epithelial cells. They play a major role in water homeostasis, acid-base control, reabsorption of compounds, and secretion of xenobiotics and endogenous metabolites. When exposed to ischemic, toxic, septic, or obstructive conditions their death results in what we clinically perceive as acute kidney injury. Additionally, due to renal cells' limited regenerative potential, the profibrotic environment inevitably leads to chronic kidney disease. In this review we will focus on human proximal tubular epithelial cells. We will cover human kidney culture models, cell sources, isolation, culture, immortalization, and characterization subdivided into morphological, phenotypical, and functional characterization.
Collapse
Affiliation(s)
- Matic Mihevc
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000, Maribor, Slovenia
| | - Tadej Petreski
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000, Maribor, Slovenia
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
| | - Uroš Maver
- Faculty of Medicine, Institute of Biomedical Sciences, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.
| | - Sebastjan Bevc
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000, Maribor, Slovenia.
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.
| |
Collapse
|
4
|
Sallam M, Palakkan AA, Mills CG, Tarnick J, Elhendawi M, Marson L, Davies JA. Differentiation of a Contractile, Ureter-Like Tissue, from Embryonic Stem Cell-Derived Ureteric Bud and Ex Fetu Mesenchyme. J Am Soc Nephrol 2020; 31:2253-2262. [PMID: 32826325 DOI: 10.1681/asn.2019101075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND There is intense interest in replacing kidneys from stem cells. It is now possible to produce, from embryonic or induced pluripotent stem cells, kidney organoids that represent immature kidneys and display some physiologic functions. However, current techniques have not yet resulted in renal tissue with a ureter, which would be needed for engineered kidneys to be clinically useful. METHODS We used a published sequence of growth factors and drugs to induce mouse embryonic stem cells to differentiate into ureteric bud tissue. We characterized isolated engineered ureteric buds differentiated from embryonic stem cells in three-dimensional culture and grafted them into ex fetu mouse kidney rudiments. RESULTS Engineered ureteric buds branched in three-dimensional culture and expressed Hoxb7, a transcription factor that is part of a developmental regulatory system and a ureteric bud marker. When grafted into the cortex of ex fetu kidney rudiments, engineered ureteric buds branched and induced nephron formation; when grafted into peri-Wolffian mesenchyme, still attached to a kidney rudiment or in isolation, they did not branch but instead differentiated into multilayer ureter-like epithelia displaying robust expression of the urothelial marker uroplakin. This engineered ureteric bud tissue also organized the mesenchyme into smooth muscle that spontaneously contracted, with a period a little slower than that of natural ureteric peristalsis. CONCLUSIONS Mouse embryonic stem cells can be differentiated into ureteric bud cells. Grafting those UB-like structures into peri-Wolffian mesenchyme of cultured kidney rudiments can induce production of urothelium and organize the mesenchyme to produce rhythmically contracting smooth muscle layers. This development may represent a significant step toward the goal of renal regeneration.
Collapse
Affiliation(s)
- May Sallam
- Deanery of Biomedical Science, University of Edinburgh, Edinburgh, UK .,Human Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Anwar A Palakkan
- Deanery of Biomedical Science, University of Edinburgh, Edinburgh, UK
| | | | - Julia Tarnick
- Deanery of Biomedical Science, University of Edinburgh, Edinburgh, UK
| | - Mona Elhendawi
- Deanery of Biomedical Science, University of Edinburgh, Edinburgh, UK.,Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Lorna Marson
- Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Jamie A Davies
- Deanery of Biomedical Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Burton TP, Corcoran A, Callanan A. The effect of electrospun polycaprolactone scaffold morphology on human kidney epithelial cells. Biomed Mater 2017; 13:015006. [PMID: 29165317 DOI: 10.1088/1748-605x/aa8dde] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is a pressing need for further advancement in tissue engineering of functional organs with a view to providing a more clinically relevant model for drug development and reduce the dependence on organ donation. Polymer-based scaffolds, such as polycaprolactone (PCL), have been highlighted as a potential avenue for tissue engineered kidneys, but there is little investigation down this stream. Focus within kidney tissue engineering has been on two-dimensional cell culture and decellularised tissue. Electrospun polymer scaffolds can be created with a variety of fibre diameters and have shown a great potential in many areas. The variation in morphology of tissue engineering scaffold has been shown to effect the way cells behave and integrate. In this study we examined the cellular response to scaffold architecture of novel electrospun scaffold for kidney tissue engineering. Fibre diameters of 1.10 ± 0.16 μm and 4.49 ± 0.47 μm were used with three distinct scaffold architectures. Traditional random fibres were spun onto a mandrel rotating at 250 rpm, aligned at 1800 rpm with novel cryogenic fibres spun onto a mandrel loaded with dry ice rotating at 250 rpm. Human kidney epithelial cells were grown for 1 and 2 weeks. Fibre morphology had no effect of cell viability in scaffolds with a large fibre diameter but significant differences were seen in smaller fibres. Fibre diameter had a significant effect in aligned and cryogenic scaffold. Imaging detailed the differences in cell attachment due to scaffold differences. These results show that architecture of the scaffold has a profound effect on kidney cells; whether that is effects of fibre diameter on the cell attachment and viability or the effect of fibre arrangement on the distribution of cells and their alignment with fibres. Results demonstrate that PCL scaffolds have the capability to maintain kidney cells life and should be investigated further as a potential scaffold in kidney tissue engineering.
Collapse
Affiliation(s)
- Todd P Burton
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Faraday Building, King's Buildings, EH9 3JL, United Kingdom
| | | | | |
Collapse
|
6
|
Davies JA. Self-organized Kidney Rudiments: Prospects for Better in vitro Nephrotoxicity Assays. Biomark Insights 2015; 10:117-23. [PMID: 26244008 PMCID: PMC4507472 DOI: 10.4137/bmi.s20056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/08/2015] [Accepted: 03/11/2015] [Indexed: 12/29/2022] Open
Abstract
Kidneys are essential to life but vulnerable to a range of toxicants, including therapeutic drugs and their metabolites. Indeed, nephrotoxicity is often a limiting factor in both drug use and drug development. Most toxicants damage kidneys by one of four mechanisms: damage to the membrane and its junctions, oxidative stress and free radical generation, activation of inflammatory processes, and interference with vascular regulation. Traditionally, animal models were used in preclinical screening for nephrotoxicity, but these can be poorly predictive of human reactions. Animal screens have been joined by simple single-cell–type in vitro assays using primary or immortalized human cells, particularly proximal tubule cells as these are especially vulnerable to toxicants. Recent research, aimed mainly at engineering new kidneys for transplant purposes, has resulted in a method for constructing anatomically realistic mini-kidneys from renogenic stem cells. So far, this has been done only using renogenic stem cells obtained directly from mouse embryos but, in principle, it should be possible to make them from renogenically directed human-induced pluripotent cells. If this can be done, the resulting human-based mini-kidneys would be a promising system for detecting some types of nephrotoxicity and for developing nephroprotective drugs.
Collapse
Affiliation(s)
- Jamie A Davies
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|