1
|
Medina Rangel PX, Cross E, Liu C, Pedigo CE, Tian X, Gutiérrez-Calabrés E, Nagata S, Priyadarshini A, Lerner G, Bunda P, Perincheri S, Gu J, Zhao H, Wang Y, Inoue K, Ishibe S. Cell Cycle and Senescence Regulation by Podocyte Histone Deacetylase 1 and 2. J Am Soc Nephrol 2023; 34:433-450. [PMID: 36414418 PMCID: PMC10103311 DOI: 10.1681/asn.2022050598] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/17/2022] [Accepted: 11/06/2022] [Indexed: 11/24/2022] Open
Abstract
SIGNIFICANCE STATEMENT The loss of integrity of the glomerular filtration barrier results in proteinuria that is often attributed to podocyte loss. Yet how damaged podocytes are lost remains unknown. Germline loss of murine podocyte-associated Hdac1 and Hdac2 ( Hdac1/2 ) results in proteinuria and collapsing glomerulopathy due to sustained double-stranded DNA damage. Hdac1/2 deletion induces loss of podocyte quiescence, cell cycle entry, arrest in G1, and podocyte senescence, observed both in vivo and in vitro . Through the senescence secretory associated phenotype, podocytes secrete proteins that contribute to their detachment. These results solidify the role of HDACs in cell cycle regulation and senescence, providing important clues in our understanding of how podocytes are lost following injury. BACKGROUND Intact expression of podocyte histone deacetylases (HDAC) during development is essential for maintaining a normal glomerular filtration barrier because of its role in modulating DNA damage and preventing premature senescence. METHODS Germline podocyte-specific Hdac1 and 2 ( Hdac1 / 2 ) double-knockout mice were generated to examine the importance of these enzymes during development. RESULTS Podocyte-specific loss of Hdac1 / 2 in mice resulted in severe proteinuria, kidney failure, and collapsing glomerulopathy. Hdac1 / 2 -deprived podocytes exhibited classic characteristics of senescence, such as senescence-associated β-galactosidase activity and lipofuscin aggregates. In addition, DNA damage, likely caused by epigenetic alterations such as open chromatin conformation, not only resulted in podocyte cell-cycle entry as shown in vivo by Ki67 expression and by FUCCI-2aR mice, but also in p21-mediated cell-cycle arrest. Through the senescence secretory associated phenotype, the damaged podocytes secreted proinflammatory cytokines, growth factors, and matrix metalloproteinases, resulting in subsequent podocyte detachment and loss, evidenced by senescent podocytes in urine. CONCLUSIONS Hdac1 / 2 plays an essential role during development. Loss of these genes in double knockout mice leads to sustained DNA damage and podocyte senescence and loss.
Collapse
Affiliation(s)
| | - Elizabeth Cross
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Chang Liu
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Christopher E. Pedigo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Xuefei Tian
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | | - Soichiro Nagata
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Anupama Priyadarshini
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Gabriel Lerner
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Patricia Bunda
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Sudhir Perincheri
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Jianlei Gu
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Hongyu Zhao
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Ying Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Kazunori Inoue
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Shuta Ishibe
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
2
|
Liu PJ, Gunther LK, Garone ME, Zhang C, Perez D, Bi-Karchin J, Pellenz CD, Chase SE, Presti MF, Plante EL, Martin CE, Lovric S, Yengo CM, Hildebrandt F, Krendel M. Steroid-Resistant Nephrotic Syndrome-Associated MYO1E Mutations Have Differential Effects on Myosin 1e Localization, Dynamics, and Activity. J Am Soc Nephrol 2022; 33:1989-2007. [PMID: 36316095 PMCID: PMC9678034 DOI: 10.1681/asn.2021111505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/22/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Myo1e is a nonmuscle motor protein enriched in podocytes. Mutations in MYO1E are associated with steroid-resistant nephrotic syndrome (SRNS). Most of the MYO1E variants identified by genomic sequencing have not been functionally characterized. Here, we set out to analyze two mutations in the Myo1e motor domain, T119I and D388H, which were selected on the basis of protein sequence conservation. METHODS EGFP-tagged human Myo1e constructs were delivered into the Myo1e-KO mouse podocyte-derived cells via adenoviral infection to analyze Myo1e protein stability, Myo1e localization, and clathrin-dependent endocytosis, which is known to involve Myo1e activity. Furthermore, truncated Myo1e constructs were expressed using the baculovirus expression system and used to measure Myo1e ATPase and motor activity in vitro. RESULTS Both mutants were expressed as full-length proteins in the Myo1e-KO cells. However, unlike wild-type (WT) Myo1e, the T119I variant was not enriched at the cell junctions or clathrin-coated vesicles (CCVs). In contrast, D388H variant localization was similar to that of WT. The rate of dissociation of the D388H variant from cell-cell junctions and CCVs was decreased, suggesting this mutation affects Myo1e interactions with binding partners. ATPase activity and ability to translocate actin filaments were drastically reduced for the D388H mutant, supporting findings from cell-based experiments. CONCLUSIONS T119I and D388H mutations are deleterious to Myo1e functions. The experimental approaches used in this study can be applied to future characterization of novel MYO1E variants associated with SRNS.
Collapse
Affiliation(s)
- Pei-Ju Liu
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Laura K. Gunther
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Michael E. Garone
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Chunling Zhang
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York
| | - Diana Perez
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Jing Bi-Karchin
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Christopher D. Pellenz
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Sharon E. Chase
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Maria F. Presti
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Eric L. Plante
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Claire E. Martin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
| | - Svjetlana Lovric
- Divison of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christopher M. Yengo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Friedhelm Hildebrandt
- Divison of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| |
Collapse
|
3
|
Tian X, Bunda P, Ishibe S. Podocyte Endocytosis in Regulating the Glomerular Filtration Barrier. Front Med (Lausanne) 2022; 9:801837. [PMID: 35223901 PMCID: PMC8866310 DOI: 10.3389/fmed.2022.801837] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/06/2022] [Indexed: 12/26/2022] Open
Abstract
Endocytosis is a mechanism that internalizes and recycles plasma membrane components and transmembrane receptors via vesicle formation, which is mediated by clathrin-dependent and clathrin-independent signaling pathways. Podocytes are specialized, terminally differentiated epithelial cells in the kidney, located on the outermost layer of the glomerulus. These cells play an important role in maintaining the integrity of the glomerular filtration barrier in conjunction with the adjacent basement membrane and endothelial cell layers within the glomerulus. An intact podocyte endocytic machinery appears to be necessary for maintaining podocyte function. De novo pathologic human genetic mutations and loss-of-function studies of critical podocyte endocytosis genes in genetically engineered mouse models suggest that this pathway contributes to the pathophysiology of development and progression of proteinuria in chronic kidney disease. Here, we review the mechanism of cellular endocytosis and its regulation in podocyte injury in the context of glomerular diseases. A thorough understanding of podocyte endocytosis may shed novel insights into its biological function in maintaining a functioning filter and offer potential targeted therapeutic strategies for proteinuric glomerular diseases.
Collapse
Affiliation(s)
| | | | - Shuta Ishibe
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
4
|
Wang Y, Pedigo CE, Inoue K, Tian X, Cross E, Ebenezer K, Li W, Wang Z, Shin JW, Schwartze E, Groener M, Ishibe S. Murine Epsins Play an Integral Role in Podocyte Function. J Am Soc Nephrol 2020; 31:2870-2886. [PMID: 33051360 PMCID: PMC7790213 DOI: 10.1681/asn.2020050691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/30/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Epsins, a family of evolutionarily conserved membrane proteins, play an essential role in endocytosis and signaling in podocytes. METHODS Podocyte-specific Epn1, Epn2, Epn3 triple-knockout mice were generated to examine downstream regulation of serum response factor (SRF) by cell division control protein 42 homolog (Cdc42). RESULTS Podocyte-specific loss of epsins resulted in increased albuminuria and foot process effacement. Primary podocytes isolated from these knockout mice exhibited abnormalities in cell adhesion and spreading, which may be attributed to reduced activation of cell division control protein Cdc42 and SRF, resulting in diminished β1 integrin expression. In addition, podocyte-specific loss of Srf resulted in severe albuminuria and foot process effacement, and defects in cell adhesion and spreading, along with decreased β1 integrin expression. CONCLUSIONS Epsins play an indispensable role in maintaining properly functioning podocytes through the regulation of Cdc42 and SRF-dependent β1 integrin expression.
Collapse
Affiliation(s)
- Ying Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Chaoyang District, Beijing, 100029, China
| | - Christopher E Pedigo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Kazunori Inoue
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Xuefei Tian
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Elizabeth Cross
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Karen Ebenezer
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Wei Li
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Zhen Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jee Won Shin
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Eike Schwartze
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Marwin Groener
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Shuta Ishibe
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|