1
|
Sprenger-Svačina A, Svačina MKR, Gao T, Ritzel RM, McCullough LD, Sheikh KA, Zhang G. Differential regulation of tissue-resident and blood-derived macrophages in models of autoimmune and traumatic peripheral nerve injury. Front Immunol 2024; 15:1487788. [PMID: 39628475 PMCID: PMC11611839 DOI: 10.3389/fimmu.2024.1487788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/31/2024] [Indexed: 12/06/2024] Open
Abstract
Introduction The current study focuses on understanding the functional role of different subsets of endoneurial macrophages in autoimmune polyneuropathies (AP) and traumatic peripheral nerve injury (TPNI), which holds potential for clinical application. Recent studies have advanced our understanding of the diverse origins of macrophages within peripheral nerves. However, there remains a gap in our knowledge regarding how endoneurial macrophages from different origins affect disease progression in AP versus TPNI. Methods Flow cytometry was utilized to analyze macrophage phenotypes, including polarization states, cytokine production, and myelin phagocytosis in animal models of AP and TPNI. This study focuses on two distinct origins of macrophages, namely CD11b+F4/80hi tissue-resident (TRM) and CD11b+F4/80int blood-derived macrophages (BDM). The study utilized two animal models: the first was the spontaneous autoimmune peripheral polyneuropathy (SAPP) model in B7.2-null non-obese diabetic (NOD-B7.2-/-) mice, which serves as a model for inflammatory demyelinating polyneuropathy; the second model involved wild type C57BL/6 mice subjected to sciatic nerve crush injury, modeling TPNI. Behavioral, electrophysiological, and histological analyses were performed to assess peripheral nerve injury. Results The study found that pro-inflammatory M1 macrophage polarization and tumor necrosis factor-alpha production by macrophages were more pronounced in the peripheral nerves of SAPP mice compared to those with TPNI, with the majority of these macrophages being TRM. In contrast, endoneurial macrophages in mice with TPNI were mainly BDM, exhibiting a less defined macrophage polarization and cytokine profile than TRM in AP mice. Interestingly, myelin phagocytosis was primarily driven by BDM in both SAPP and TPNI mice. Discussion This study offers novel insights into origin-dependent macrophage functions in AP and TPNI. Furthermore, these findings may help the future development of novel therapies targeting macrophage subsets of specific origin in AP and TPNI.
Collapse
Affiliation(s)
- Alina Sprenger-Svačina
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Martin K. R. Svačina
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Tong Gao
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Rodney M. Ritzel
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kazim A. Sheikh
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Gang Zhang
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
2
|
Lin TW, Chang JK, Wu YR, Sun TH, Cheng YY, Ren CT, Pan MH, Wu JL, Chang KH, Yang HI, Chen CM, Wu CY, Chen YR. Ganglioside-focused Glycan Array Reveals Abnormal Anti-GD1b Auto-antibody in Plasma of Preclinical Huntington's Disease. Mol Neurobiol 2023; 60:3873-3882. [PMID: 36976478 DOI: 10.1007/s12035-023-03307-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/08/2023] [Indexed: 03/29/2023]
Abstract
Huntington's disease (HD) is a progressive and devastating neurodegenerative disease marked by inheritable CAG nucleotide expansion. For offspring of HD patients carrying abnormal CAG expansion, biomarkers that predict disease onset are crucially important but still lacking. Alteration of brain ganglioside patterns has been observed in the pathology of patients carrying HD. Here, by using a novel and sensitive ganglioside-focused glycan array, we examined the potential of anti-glycan auto-antibodies for HD. In this study, we collected plasma from 97 participants including 42 control (NC), 16 pre-manifest HD (pre-HD), and 39 HD cases and measured the anti-glycan auto-antibodies by a novel ganglioside-focused glycan array. The association between plasma anti-glycan auto-antibodies and disease progression was analyzed using univariate and multivariate logistic regression. The disease-predictive capacity of anti-glycan auto-antibodies was further investigated by receiver operating characteristic (ROC) analysis. We found that anti-glycan auto-antibodies were generally higher in the pre-HD group when compared to the NC and HD groups. Specifically, anti-GD1b auto-antibody demonstrated the potential for distinguishing between pre-HD and control groups. Moreover, in combination with age and the number of CAG repeat, the level of anti-GD1b antibody showed excellent predictability with an area under the ROC curve (AUC) of 0.95 to discriminate between pre-HD carriers and HD patients. With glycan array technology, this study demonstrated abnormal auto-antibody responses that showed temporal changes from pre-HD to HD.
Collapse
Affiliation(s)
- Tien-Wei Lin
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Jung-Kai Chang
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsung-Hsien Sun
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Yang-Yu Cheng
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Chien-Tai Ren
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Mei-Hung Pan
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Jin-Lin Wu
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
3
|
Anti-Ganglioside Antibodies Induce Nodal and Axonal Injury via Fcγ Receptor-Mediated Inflammation. J Neurosci 2015; 35:6770-85. [PMID: 25926454 DOI: 10.1523/jneurosci.4926-14.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Guillain-Barré syndrome (GBS) is a postinfectious autoimmune neuropathy and anti-ganglioside antibodies (Abs) are strongly associated with this disorder. Several studies have implied that specific anti-ganglioside Abs induce neuropathy in patients with axonal forms of GBS. To study the mechanisms of anti-ganglioside Abs-induced neuropathy, we established a new passive transfer mouse model by L5 spinal nerve transection (L5SNT; modified Chung's model) and systemic administration of anti-ganglioside Abs. L5SNT causes degeneration of a small proportion of fibers that constitute sciatic nerve and its branches, but importantly breaks the blood-nerve barrier, which allows access to circulating Abs and inflammatory cells. Our studies indicate that, in this mouse model, anti-ganglioside Abs induce sequential nodal and axonal injury of intact myelinated nerve fibers, recapitulating pathologic features of human disease. Notably, our results showed that immune complex formation and the activating Fc gamma receptors (FcγRs) were involved in the anti-ganglioside Abs-mediated nodal and axonal injury in this model. These studies provide new evidence that the activating FcγRs-mediated inflammation plays a critical role in anti-ganglioside Abs-induced neuropathy (injury to intact nerve fibers) in GBS.
Collapse
|
4
|
DU YAMEI, ZHANG GUOJUN, ZHANG ZAIQIANG, WANG QIAN, MA RUIMIN, ZHANG LIMIN, FAN FEI, LI YOURAN, WANG MENG, LV HONG, KANG XIXIONG. Toll-like receptor 2 and -4 are involved in the pathogenesis of the Guillain-Barré syndrome. Mol Med Rep 2015; 12:3207-13. [DOI: 10.3892/mmr.2015.3730] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 04/15/2015] [Indexed: 11/05/2022] Open
|
5
|
|
6
|
Zhang G, Bogdanova N, Gao T, Song JJ, Cragg MS, Glennie MJ, Sheikh KA. Fcγ receptor-mediated inflammation inhibits axon regeneration. PLoS One 2014; 9:e88703. [PMID: 24523933 PMCID: PMC3921223 DOI: 10.1371/journal.pone.0088703] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/10/2014] [Indexed: 01/03/2023] Open
Abstract
Anti-glycan/ganglioside antibodies are the most common immune effectors found in patients with Guillain-Barré Syndrome, which is a peripheral autoimmune neuropathy. We previously reported that disease-relevant anti-glycan autoantibodies inhibited axon regeneration, which echo the clinical association of these antibodies and poor recovery in Guillain-Barré Syndrome. However, the specific molecular and cellular elements involved in this antibody-mediated inhibition of axon regeneration are not previously defined. This study examined the role of Fcγ receptors and macrophages in the antibody-mediated inhibition of axon regeneration. A well characterized antibody passive transfer sciatic nerve crush and transplant models were used to study the anti-ganglioside antibody-mediated inhibition of axon regeneration in wild type and various mutant and transgenic mice with altered expression of specific Fcγ receptors and macrophage/microglia populations. Outcome measures included behavior, electrophysiology, morphometry, immunocytochemistry, quantitative real-time PCR, and western blotting. We demonstrate that the presence of autoantibodies, directed against neuronal/axonal cell surface gangliosides, in the injured mammalian peripheral nerves switch the proregenerative inflammatory environment to growth inhibitory milieu by engaging specific activating Fcγ receptors on recruited monocyte-derived macrophages to cause severe inhibition of axon regeneration. Our data demonstrate that the antibody orchestrated Fcγ receptor-mediated switch in inflammation is one mechanism underlying inhibition of axon regeneration. These findings have clinical implications for nerve repair and recovery in antibody-mediated immune neuropathies. Our results add to the complexity of axon regeneration in injured peripheral and central nervous systems as adverse effects of B cells and autoantibodies on neural injury and repair are increasingly recognized.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Nataliia Bogdanova
- Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Tong Gao
- Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Julia J. Song
- Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Mark S. Cragg
- Antibody and Vaccine Group, Cancer Sciences Division, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Martin J. Glennie
- Antibody and Vaccine Group, Cancer Sciences Division, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Kazim A. Sheikh
- Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, United States of America
| |
Collapse
|
7
|
Lehmann HC, Hughes RAC, Kieseier BC, Hartung HP. Recent developments and future directions in Guillain-Barré syndrome. J Peripher Nerv Syst 2013; 17 Suppl 3:57-70. [PMID: 23279434 DOI: 10.1111/j.1529-8027.2012.00433.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Guillain-Barré syndrome (GBS) encompasses a spectrum of acquired neuropathic conditions characterized by inflammatory demyelinating or axonal peripheral neuropathy with acute onset. Clinical and experimental studies in the past years have led to substantial progress in epidemiology, pathogenesis of GBS variants, and identification of prognostic factors relevant to treatment. In this review we provide an overview and critical assessment of the most recent developments and future directions in GBS research.
Collapse
Affiliation(s)
- Helmar C Lehmann
- Department of Neurology, Heinrich-Heine-University, Medical School, Moorenstrasse 5, Düsseldorf, Germany
| | | | | | | |
Collapse
|
8
|
Sheikh KA. Autoantobodies activate small GTPase RhoA to modulate neurite outgrowth. Small GTPases 2011; 2:233-238. [PMID: 22145097 DOI: 10.4161/sgtp.2.4.17115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 06/18/2011] [Accepted: 07/05/2011] [Indexed: 11/19/2022] Open
Abstract
This review illustrates an example of adaptive immune responses (auto-antibodies) modulating growth/repair behavior of neurons in the disease context of Guillain-Barré syndrome (GBS), which is a prototypic autoimmune, acute monophasic disorder of the peripheral nerves that is the commonest cause of acute flaccid paralysis worldwide. Anti-ganglioside antibodies (Abs) are the most commonly recognized autoimmune markers in all forms of GBS and these Abs are associated with poor recovery. Extent of axonal injury and failure of axonal regeneration are critical determinants of recovery after GBS. In this clinical context, our group examined the hypothesis that anti-ganglioside Abs adversely affect axon regeneration after peripheral nerve injury. We show that anti-ganglioside Abs inhibit axon regeneration in preclinical cell culture and animal models. This inhibition is mediated by activation of small GTPase RhoA and its downstream effector Rho kinase (ROCK) by modulation of growth cone extension and associated neurite elongation in neuronal cultures. Our studies suggest that RhoA and ROCK are potential targets for development of novel therapeutic strategies to enhance nerve repair.
Collapse
Affiliation(s)
- Kazim A Sheikh
- Department of Neurology; University of Texas Medical School at Houston; Houston, TX USA
| |
Collapse
|
9
|
Anti-ganglioside antibody-mediated activation of RhoA induces inhibition of neurite outgrowth. J Neurosci 2011; 31:1664-75. [PMID: 21289175 DOI: 10.1523/jneurosci.3829-10.2011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Anti-ganglioside antibodies (Abs) are strongly associated with axonal forms of Guillain Barré syndrome (GBS). Some studies indicate that these Abs, including those with GD1a reactivity, are associated with poor prognosis and/or incomplete recovery. We recently demonstrated that a disease-relevant anti-ganglioside Ab with GD1a reactivity inhibits axon regeneration after PNS injury in an animal model (Lehmann et al., 2007). An implication of these findings is that anti-GD1a Abs can mediate inhibition of axon regeneration and limit recovery in some patients with GBS. The downstream inhibitory intracellular signaling that mediates anti-ganglioside Ab-induced axon inhibition remains unclear. In the current study, we show that disease-relevant and GBS patient's anti-ganglioside Abs can inhibit neurite outgrowth in dissociated primary neuronal cultures. Activation of small GTPase RhoA and its key downstream effector Rho kinase (ROCK) are critical mediators of growth cone and neurite outgrowth inhibition. Therefore, we examined the role of these intracellular signaling molecules in our primary neuronal cultures by molecular and pharmacologic approaches. Our results show that the Ab-mediated inhibition of neurite outgrowth involves the activation of RhoA and ROCK pathway and this activation is through the engagement of specific cell-surface gangliosides by Abs. In summary, these studies directly link patient autoantibodies to an intracellular inhibitory signaling pathway involved in anti-ganglioside Ab-mediated inhibition of neurite outgrowth.
Collapse
|
10
|
Abstract
Anti-GM1 antibodies are present in some patients with autoimmune neurological disorders. These antibodies are most frequently associated with acute immune neuropathy called Guillain-Barré syndrome (GBS). Some clinical studies associate the presence of these antibodies with poor recovery in GBS. The patients with incomplete recovery have failure of nerve repair, particularly axon regeneration. Our previous work indicates that monoclonal antibodies can inhibit axon regeneration by engaging cell surface gangliosides (Lehmann et al., 2007). We asked whether passive transfer of human anti-GM1 antibodies from patients with GBS modulate axon regeneration in an animal model. Human anti-GM1 antibodies were compared with other GM1 ligands, cholera toxin B subunit and a monoclonal anti-GM1 antibody. Our results show that patient derived anti-GM1 antibodies and cholera toxin beta subunit impair axon regeneration/repair after PNS injury in mice. Comparative studies indicated that the antibody/ligand-mediated inhibition of axon regeneration is dependent on antibody/ligand characteristics such as affinity-avidity and fine specificity. These data indicate that circulating immune effectors such as human autoantibodies, which are exogenous to the nervous system, can modulate axon regeneration/nerve repair in autoimmune neurological disorders such as GBS.
Collapse
|