1
|
Positron emission tomography-computed tomography (PET-CT) in suspected malignant pleural effusion. An updated systematic review and meta-analysis. Lung Cancer 2021; 162:106-118. [PMID: 34775214 DOI: 10.1016/j.lungcan.2021.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/31/2021] [Indexed: 12/19/2022]
Abstract
The role of PET and integrated PET-CT in the diagnostic workup of suspected malignant pleural effusions is unknown. Earlier systematic reviews (published 2014 and 2015) both included pleural pathology without effusion, and reached contradictory conclusions. Five studies have been published since the latest review. This systematic review and meta-analysis aims to summarise the evidence of PET and integrated PET-CT in predicting pleural malignancy in patients suspected of having malignant pleural effusions. A meta-analysis based on a systematic literature search in Cochrane Library, Medline, EMBASE and Clinicaltrials.gov was performed. Diagnostic studies evaluating the performance of PET or PET-CT in patients with suspected malignant pleural effusion, using pleural fluid cytology or histopathology as the reference test, and presenting sufficient data for constructing a 2x2 table were included. The quality of the studies was assessed by the Quality Assessment of Diagnostic Accuracy Studies-2 score. Subgroup analyses on image modality, interpretation method and known malignancy status pre index-test application were planned. Seven studies with low risk of bias were included. The pooled ability to separate benign from malignant effusions varied with image modality, interpretation method and known malignancy status pre index-test application. In studies using PET-CT, visual/qualitative image analysis was superior to semi-quantitative with positive (LR + ) and negative likelihood ratio (LR-) of 9.9 (4.5-15.3) respectively 0.1 (0.1-0.2). There was considerable heterogeneity among studies. In conclusion, visual/qualitative image analysis of integrated PET-CT seems to add relevant information in the work-up of suspected malignant pleural effusions with LR + and LR- close to rigorous pre-set cut-offs of > 10 and < 0.1. However, the quality of evidence was low due to inter-study heterogeneity, and inability to assess meta-bias. Clinical Trial Registration: The protocol was uploaded to the PROSPERO database (CRD42020213319) on the 13th of October 2020.
Collapse
|
2
|
Sun Y, Yu H, Ma J, Lu P. The Role of 18F-FDG PET/CT Integrated Imaging in Distinguishing Malignant from Benign Pleural Effusion. PLoS One 2016; 11:e0161764. [PMID: 27560933 PMCID: PMC4999143 DOI: 10.1371/journal.pone.0161764] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 08/11/2016] [Indexed: 11/19/2022] Open
Abstract
Objective The aim of our study was to evaluate the role of 18F-FDG PET/CT integrated imaging in differentiating malignant from benign pleural effusion. Methods A total of 176 patients with pleural effusion who underwent 18F-FDG PET/CT examination to differentiate malignancy from benignancy were retrospectively researched. The images of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were visually analyzed. The suspected malignant effusion was characterized by the presence of nodular or irregular pleural thickening on CT imaging. Whereas on PET imaging, pleural 18F-FDG uptake higher than mediastinal activity was interpreted as malignant effusion. Images of 18F-FDG PET/CT integrated imaging were interpreted by combining the morphologic feature of pleura on CT imaging with the degree and form of pleural 18F-FDG uptake on PET imaging. Results One hundred and eight patients had malignant effusion, including 86 with pleural metastasis and 22 with pleural mesothelioma, whereas 68 patients had benign effusion. The sensitivities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging in detecting malignant effusion were 75.0%, 91.7% and 93.5%, respectively, which were 69.8%, 91.9% and 93.0% in distinguishing metastatic effusion. The sensitivity of 18F-FDG PET/CT integrated imaging in detecting malignant effusion was higher than that of CT imaging (p = 0.000). For metastatic effusion, 18F-FDG PET imaging had higher sensitivity (p = 0.000) and better diagnostic consistency with 18F-FDG PET/CT integrated imaging compared with CT imaging (Kappa = 0.917 and Kappa = 0.295, respectively). The specificities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were 94.1%, 63.2% and 92.6% in detecting benign effusion. The specificities of CT imaging and 18F-FDG PET/CT integrated imaging were higher than that of 18F-FDG PET imaging (p = 0.000 and p = 0.000, respectively), and CT imaging had better diagnostic consistency with 18F-FDG PET/CT integrated imaging compared with 18F-FDG PET imaging (Kappa = 0.881 and Kappa = 0.240, respectively). Conclusion 18F-FDG PET/CT integrated imaging is a more reliable modality in distinguishing malignant from benign pleural effusion than 18F-FDG PET imaging and CT imaging alone. For image interpretation of 18F-FDG PET/CT integrated imaging, the PET and CT portions play a major diagnostic role in identifying metastatic effusion and benign effusion, respectively.
Collapse
Affiliation(s)
- Yajuan Sun
- Department of Radiological Diagnosis, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Hongjuan Yu
- Department of hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jingquan Ma
- Center of PET/CT, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Peiou Lu
- Center of PET/CT, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- * E-mail:
| |
Collapse
|
3
|
Abstract
We investigated the role of F-18 fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) for the differential diagnosis of malignant and benign pleural effusion. We studied 36 consecutive patients with histologically proven cancer (excluding malignant mesothelioma) who underwent FDG-PET/CT for suspected malignant pleural effusion. Fourteen patients had cytologically proven malignant pleural effusion and the other 22 patients had either negative cytology or clinical follow-up, which confirmed the benign etiology. We examined the maximum standardized uptake values (SUV max) of pleural effusion and the target-to-normal tissue ratio (TNR), calculated as the ratio of the pleural effusion SUV max to the SUV mean of the normal tissues (liver, spleen, 12th thoracic vertebrae [Th12], thoracic aorta, and spinalis muscle). We also examined the size and density (in Hounsfield units) of the pleural effusion and pleural abnormalities on CT images. TNR (Th12) and increased pleural FDG uptake compared to background blood pool were significantly more frequent in cases with malignant pleural effusion (P < 0.05 for both). The cutoff TNR (Th12) value of >0.95 was the most accurate; the sensitivity, specificity, and accuracy for this value were 93%, 68%, and 75%, respectively. FDG-PET/CT can be a useful method for the differential diagnosis of malignant and benign pleural effusion.
Collapse
Affiliation(s)
- Reiko Nakajima
- From the Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | | | | |
Collapse
|
4
|
Rodriguez-Panadero F, Romero-Romero B. Lung cancer coexisting with ipsilateral pleural effusion. Lung Cancer Manag 2014. [DOI: 10.2217/lmt.14.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Invasion beyond the elastic layer of the visceral pleura and/or diffuse pleural metastatic spread affects negatively survival in lung cancer. Presence of pleural effusion is also associated with poor prognosis, and image techniques can be of great help for diagnosis. When pleural fluid cytology is negative, thoracoscopy is advisable before attempting tumor resection, in order to detect unsuspected pleural metastases. If widespread pleural malignancy is confirmed, chemical pleurodesis using graded talc (with particles larger than 20 µm in diameter) is the best option, unless the lung is unable to re-expand. In this case, or when a previous pleurodesis has failed, or there is a short life expectancy, placement of a indwelling pleural catheter is the treatment of choice.
Collapse
Affiliation(s)
- Francisco Rodriguez-Panadero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Unidad Médico–Quirúrgica de Enfermedades Respiratorias (UMQER), Hospital Universitario Virgen del Rocío, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), I.S. Carlos III, Spain
| | - Beatriz Romero-Romero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Unidad Médico–Quirúrgica de Enfermedades Respiratorias (UMQER), Hospital Universitario Virgen del Rocío, Seville, Spain
| |
Collapse
|
5
|
Treglia G, Sadeghi R, Annunziata S, Lococo F, Cafarotti S, Prior JO, Bertagna F, Ceriani L, Giovanella L. Diagnostic performance of Fluorine-18-Fluorodeoxyglucose positron emission tomography in the assessment of pleural abnormalities in cancer patients: A systematic review and a meta-analysis. Lung Cancer 2014; 83:1-7. [DOI: 10.1016/j.lungcan.2013.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/30/2013] [Accepted: 11/03/2013] [Indexed: 11/16/2022]
|
6
|
Treglia G, Sadeghi R, Annunziata S, Lococo F, Cafarotti S, Bertagna F, Prior JO, Ceriani L, Giovanella L. Diagnostic accuracy of 18F-FDG-PET and PET/CT in the differential diagnosis between malignant and benign pleural lesions: a systematic review and meta-analysis. Acad Radiol 2014; 21:11-20. [PMID: 24331260 DOI: 10.1016/j.acra.2013.09.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 12/01/2022]
Abstract
RATIONALE AND OBJECTIVES To systematically review and meta-analyze published data about the diagnostic accuracy of fluorine-18-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) and PET/computed tomography (CT) in the differential diagnosis between malignant and benign pleural lesions. METHODS AND MATERIALS A comprehensive literature search of studies published through June 2013 regarding the diagnostic performance of (18)F-FDG-PET and PET/CT in the differential diagnosis of pleural lesions was carried out. All retrieved studies were reviewed and qualitatively analyzed. Pooled sensitivity, specificity, positive and negative likelihood ratio (LR+ and LR-) and diagnostic odds ratio (DOR) of (18)F-FDG-PET or PET/CT in the differential diagnosis of pleural lesions on a per-patient-based analysis were calculated. The area under the summary receiver operating characteristic curve (AUC) was calculated to measure the accuracy of these methods. Subanalyses considering device used (PET or PET/CT) were performed. RESULTS Sixteen studies including 745 patients were included in the systematic review. The meta-analysis of 11 selected studies provided the following results: sensitivity 95% (95% confidence interval [95%CI]: 92-97%), specificity 82% (95%CI: 76-88%), LR+ 5.3 (95%CI: 2.4-11.8), LR- 0.09 (95%CI: 0.05-0.14), DOR 74 (95%CI: 34-161). The AUC was 0.95. No significant improvement of the diagnostic accuracy considering PET/CT studies only was found. CONCLUSIONS (18)F-FDG-PET and PET/CT demonstrated to be accurate diagnostic imaging methods in the differential diagnosis between malignant and benign pleural lesions; nevertheless, possible sources of false-negative and false-positive results should be kept in mind.
Collapse
Affiliation(s)
- Giorgio Treglia
- Department of Nuclear Medicine and PET/CT Center, Oncology Institute of Southern Switzerland, via Ospedale, 12; 6500; Bellinzona, Switzerland.
| | - Ramin Sadeghi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Filippo Lococo
- Unit of Thoracic Surgery, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Stefano Cafarotti
- Thoracic Surgery, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Francesco Bertagna
- Chair of Nuclear Medicine, University of Brescia and Spedali Civili di Brescia, Brescia, Italy
| | - John O Prior
- Nuclear Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Luca Ceriani
- Department of Nuclear Medicine and PET/CT Center, Oncology Institute of Southern Switzerland, via Ospedale, 12; 6500; Bellinzona, Switzerland
| | - Luca Giovanella
- Department of Nuclear Medicine and PET/CT Center, Oncology Institute of Southern Switzerland, via Ospedale, 12; 6500; Bellinzona, Switzerland
| |
Collapse
|
7
|
Rodriguez-Panadero F, Romero-Romero B. Current and future options for the diagnosis of malignant pleural effusion. ACTA ACUST UNITED AC 2013; 7:275-87. [PMID: 23550710 DOI: 10.1517/17530059.2013.786038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Malignant pleural effusion (MPE) is a frequent problem faced by clinicians, but tumor pleural involvement can be seen without effusion. AREAS COVERED Imaging, pleural fluid analysis, biomarkers for MPE, needle pleural biopsy and thoracoscopy. To prepare this review, we performed a search using keywords: 'diagnosis' + 'malignant' + 'pleural' + 'effusion' (all fields) in PubMed, and found 4106 articles overall (until 16 January 2013, 881 in the last 5 years). EXPERT OPINION Ultrasound techniques will stay as valuable tools for pleural effusions. Biomarkers in pleural fluid do not currently provide an acceptable yield for MPE. In subjects with past history of asbestos exposure, some serum or plasma markers (soluble mesothelin, fibulin) might help in selecting cases for close follow-up, to detect mesothelioma early. Needle pleural biopsy is justified only if used with image-techniques (ultrasound or CT) guidance, and thoracoscopy is better for both diagnosis and immediate palliative treatment (pleurodesis). Animal models of MPE and 'spheroids' are promising for research involving both pathophysiology and therapy. Considering the possibility of direct pleural delivery of nanotechnology-developed compounds-fit to both diagnosis and therapy purposes ('theranostics')-MPE and mesothelioma in particular are likely to benefit sooner than later from this exciting perspective.
Collapse
Affiliation(s)
- Francisco Rodriguez-Panadero
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias (UMQUER), Hospital Universitario Virgen del Rocío, Seville, Spain.
| | | |
Collapse
|
8
|
Mirbolooki MR, Constantinescu CC, Pan ML, Mukherjee J. Targeting presynaptic norepinephrine transporter in brown adipose tissue: a novel imaging approach and potential treatment for diabetes and obesity. Synapse 2012; 67:79-93. [PMID: 23080264 DOI: 10.1002/syn.21617] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/12/2012] [Indexed: 12/12/2022]
Abstract
Brown adipose tissue (BAT) plays a significant role in metabolism. In this study, we report the use of atomoxetine (a clinically applicable norepinephrine reuptake inhibitor) for (18)F-FDG PET imaging of BAT and its effects on heat production and blood glucose concentration. Fasted-male Sprague-Dawley rats were administered with intravenous (18)F-FDG. The same rats were treated with atomoxetine (0.1 mg/kg, i.v.) 30 min before (18)F-FDG administration. To confirm the β-adrenergic effects, propranolol (β-adrenergic inhibitor) 5 mg/kg was given intraperitoneally 30 min prior to atomoxetine administration. The effect of atomoxetine on BAT metabolism was assessed in fasted and non-fasted rats and on BAT temperature and blood glucose in fasted rats. In (18)F-FDG PET/CT images, interscapular BAT (IBAT) and other areas of BAT were clearly visualized. When rats were fasted, atomoxetine (0.1 mg/kg) increased the (18)F-FDG uptake of IBAT by factor of 24 within 30 min. Propranolol reduced the average (18)F-FDG uptake of IBAT significantly. Autoradiography of IBAT and white adipose tissue confirmed the data obtained by PET. When rats were not fasted, atomoxetine-induced increase of (18)F-FDG uptake in IBAT was delayed and occurred in 120 min. For comparison, direct stimulation of β(3)-adrenreceptors in non-fasted rats with CL-316, 243 occurred within 30 min. Atomoxetine-induced IBAT activation was associated with higher IBAT temperature and lower blood glucose. This was mediated by inhibition of norepinephrine reuptake transporters in IBAT leading to increased norepinephrine concentration in the synapse. Increased synaptic norepinephrine activates β(3)-adrenreceptors resulting in BAT hypermetabolism that is visible and quantifiable by (18)F-FDG PET/CT.
Collapse
Affiliation(s)
- M Reza Mirbolooki
- Preclinical Imaging, Department of Radiological Sciences, University of California Irvine, Irvine, California 92697-5000, USA.
| | | | | | | |
Collapse
|