1
|
Costa IM, Siksek N, Volpe A, Man F, Osytek KM, Verger E, Schettino G, Fruhwirth GO, Terry SYA. Relationship of In Vitro Toxicity of Technetium-99m to Subcellular Localisation and Absorbed Dose. Int J Mol Sci 2021; 22:13466. [PMID: 34948266 PMCID: PMC8703725 DOI: 10.3390/ijms222413466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 02/05/2023] Open
Abstract
Auger electron-emitters increasingly attract attention as potential radionuclides for molecular radionuclide therapy in oncology. The radionuclide technetium-99m is widely used for imaging; however, its potential as a therapeutic radionuclide has not yet been fully assessed. We used MDA-MB-231 breast cancer cells engineered to express the human sodium iodide symporter-green fluorescent protein fusion reporter (hNIS-GFP; MDA-MB-231.hNIS-GFP) as a model for controlled cellular radionuclide uptake. Uptake, efflux, and subcellular location of the NIS radiotracer [99mTc]TcO4- were characterised to calculate the nuclear-absorbed dose using Medical Internal Radiation Dose formalism. Radiotoxicity was determined using clonogenic and γ-H2AX assays. The daughter radionuclide technetium-99 or external beam irradiation therapy (EBRT) served as controls. [99mTc]TcO4- in vivo biodistribution in MDA-MB-231.hNIS-GFP tumour-bearing mice was determined by imaging and complemented by ex vivo tissue radioactivity analysis. [99mTc]TcO4- resulted in substantial DNA damage and reduction in the survival fraction (SF) following 24 h incubation in hNIS-expressing cells only. We found that 24,430 decays/cell (30 mBq/cell) were required to achieve SF0.37 (95%-confidence interval = [SF0.31; SF0.43]). Different approaches for determining the subcellular localisation of [99mTc]TcO4- led to SF0.37 nuclear-absorbed doses ranging from 0.33 to 11.7 Gy. In comparison, EBRT of MDA-MB-231.hNIS-GFP cells resulted in an SF0.37 of 2.59 Gy. In vivo retention of [99mTc]TcO4- after 24 h remained high at 28.0% ± 4.5% of the administered activity/gram tissue in MDA-MB-231.hNIS-GFP tumours. [99mTc]TcO4- caused DNA damage and reduced clonogenicity in this model, but only when the radioisotope was taken up into the cells. This data guides the safe use of technetium-99m during imaging and potential future therapeutic applications.
Collapse
Affiliation(s)
- Ines M. Costa
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK; (I.M.C.); (N.S.); (F.M.); (K.M.O.); (E.V.)
| | - Noor Siksek
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK; (I.M.C.); (N.S.); (F.M.); (K.M.O.); (E.V.)
| | - Alessia Volpe
- Memorial Sloan Kettering Cancer Center, Molecular Imaging Group, Department of Radiology, New York, NY 10065, USA;
| | - Francis Man
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK; (I.M.C.); (N.S.); (F.M.); (K.M.O.); (E.V.)
| | - Katarzyna M. Osytek
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK; (I.M.C.); (N.S.); (F.M.); (K.M.O.); (E.V.)
| | - Elise Verger
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK; (I.M.C.); (N.S.); (F.M.); (K.M.O.); (E.V.)
| | - Giuseppe Schettino
- National Physical Laboratory, Department of Medical Radiation Sciences, Teddington TW11 0LW, UK;
- Faculty of Engineering and Physical Sciences, University of Surrey, Guilford GU2 7XH, UK
| | - Gilbert O. Fruhwirth
- Comprehensive Cancer Centre, Imaging Therapies and Cancer Group, School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 1UL, UK;
| | - Samantha Y. A. Terry
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK; (I.M.C.); (N.S.); (F.M.); (K.M.O.); (E.V.)
| |
Collapse
|
2
|
Reissig F, Mamat C, Steinbach J, Pietzsch HJ, Freudenberg R, Navarro-Retamal C, Caballero J, Kotzerke J, Wunderlich G. Direct and Auger Electron-Induced, Single- and Double-Strand Breaks on Plasmid DNA Caused by 99mTc-Labeled Pyrene Derivatives and the Effect of Bonding Distance. PLoS One 2016; 11:e0161973. [PMID: 27583677 PMCID: PMC5008623 DOI: 10.1371/journal.pone.0161973] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/15/2016] [Indexed: 11/29/2022] Open
Abstract
It is evident that 99mTc causes radical-mediated DNA damage due to Auger electrons, which were emitted simultaneously with the known γ-emission of 99mTc. We have synthesized a series of new 99mTc-labeled pyrene derivatives with varied distances between the pyrene moiety and the radionuclide. The pyrene motif is a common DNA intercalator and allowed us to test the influence of the radionuclide distance on damages of the DNA helix. In general, pUC 19 plasmid DNA enables the investigation of the unprotected interactions between the radiotracers and DNA that results in single-strand breaks (SSB) or double-strand breaks (DSB). The resulting DNA fragments were separated by gel electrophoresis and quantified by fluorescent staining. Direct DNA damage and radical-induced indirect DNA damage by radiolysis products of water were evaluated in the presence or absence of the radical scavenger DMSO. We demonstrated that Auger electrons directly induced both SSB and DSB in high efficiency when 99mTc was tightly bound to the plasmid DNA and this damage could not be completely prevented by DMSO, a free radical scavenger. For the first time, we were able to minimize this effect by increasing the carbon chain lengths between the pyrene moiety and the 99mTc nuclide. However, a critical distance between the 99mTc atom and the DNA helix could not be determined due to the significantly lowered DSB generation resulting from the interaction which is dependent on the type of the 99mTc binding motif. The effect of variable DNA damage caused by the different chain length between the pyrene residue and the Tc-core as well as the possible conformations of the applied Tc-complexes was supplemented with molecular dynamics (MD) calculations. The effectiveness of the DNA-binding 99mTc-labeled pyrene derivatives was demonstrated by comparison to non-DNA-binding 99mTcO4–, since nearly all DNA damage caused by 99mTcO4– was prevented by incubating with DMSO.
Collapse
Affiliation(s)
- Falco Reissig
- University Hospital/ Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
- * E-mail: (GW); (FR)
| | - Constantin Mamat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Joerg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Hans-Juergen Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Robert Freudenberg
- University Hospital/ Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
| | - Carlos Navarro-Retamal
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Casilla 721, Talca, Chile
| | - Julio Caballero
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Casilla 721, Talca, Chile
| | - Joerg Kotzerke
- University Hospital/ Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
| | - Gerd Wunderlich
- University Hospital/ Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Germany
- * E-mail: (GW); (FR)
| |
Collapse
|
3
|
Freudenberg R, Runge R, Maucksch U, Berger V, Kotzerke J. On the dose calculation at the cellular level and its implications for the RBE of (99m)Tc and ¹²³I. Med Phys 2015; 41:062503. [PMID: 24877837 DOI: 10.1118/1.4876296] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Based on the authors' previous findings concerning the radiotoxicity of(99m)Tc, the authors compared the cellular survival under the influence of this nuclide with that following exposure to the Auger electron emitter (123)I. To evaluate the relative biological effectiveness (RBE) of both radionuclides, knowledge of the absorbed dose is essential. Thus, the authors present the dose calculations and discuss the results based on different models of the radionuclide distribution. Both different target volumes and the influence of the uptake kinetics were considered. METHODS Rat thyroid PC Cl3 cells in culture were incubated with either(99m)Tc or (123)I or were irradiated using 200 kV x-rays in the presence or absence of perchlorate. The clonogenic cell survival was measured via colony formation. In addition, the intracellular radionuclide uptake was quantified. Single-cell dose calculations were based on Monte Carlo simulations performed using Geant4. RESULTS Compared with external radiation using x-rays (D37 = 2.6 Gy), the radionuclides (99m)Tc (D37 = 3.5 Gy), and (123)I (D37 = 3.8 Gy) were less toxic in the presence of perchlorate. In the absence of perchlorate, the amount of activity a37 that was necessary to reduce the surviving fraction (SF) to 0.37 was 22.8 times lower for (99m)Tc and 12.4 times lower for (123)I because of the dose increase caused by intracellular radionuclide accumulation. When the cell nucleus was considered as the target for the dose calculation, the authors found a RBE of 2.18 for (99m)Tc and RBE = 3.43 for (123)I. Meanwhile, regarding the dose to the entire cell, RBE = 0.75 for (99m)Tc and RBE = 1.87 for (123)I. The dose to the entire cell was chosen as the dose criterion because of the intracellular radionuclide accumulation, which was found to occur solely in the cytoplasm. The calculated number of intracellular decays per cell was (975 ± 109) decays/MBq for (99m)Tc and (221 ± 82) decays/MBq for (123)I. CONCLUSIONS The authors' data indicate that extra-nuclear targets to Auger electrons exist, which is obvious from our dose calculations. When considering the dose to the cell nucleus, the authors found an enhanced RBE for(99m)Tc and (123)I relative to acute x-ray irradiation and pure extracellular irradiation with both radionuclides. Surprisingly, the authors did not find any radionuclide accumulation in the cell nucleus, indicating that there are additional radiosensitive targets besides the DNA. In addition, the authors demonstrated the necessity of cellular dose calculations in radiobiological experiments using unsealed radionuclides and identified the relevant parameters.
Collapse
Affiliation(s)
- R Freudenberg
- University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Saxony 01307, Germany
| | - R Runge
- University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Saxony 01307, Germany
| | - U Maucksch
- University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Saxony 01307, Germany
| | - V Berger
- University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Saxony 01307, Germany
| | - J Kotzerke
- University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Saxony 01307, Germany
| |
Collapse
|
4
|
Ferl S, Wunderlich G, Smits R, Hoepping A, Naumann A, Kotzerke J. Synthesis of a new HYNIC-DAPI derivative for labelling with 99mTechnetium and its in vitro evaluation in an FRTL5 cell line. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00574k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A new multifunctional compound that includes the fluorescent dye 4′,6-diamidine-2-phenylindole (DAPI) and the chelator 6-hydrazinonicotinic acid (HYNIC) was developed and radiolabelled with 99mTc for in vitro evaluation in an FRTL5 cell line.
Collapse
Affiliation(s)
- Sandra Ferl
- Technische Universität Dresden
- Faculty of Medicine Carl Gustav Carus
- Department of Nuclear Medicine
- 01307 Dresden
- Germany
| | - Gerd Wunderlich
- Technische Universität Dresden
- Faculty of Medicine Carl Gustav Carus
- Department of Nuclear Medicine
- 01307 Dresden
- Germany
| | - René Smits
- ABX advanced biochemical compounds GmbH
- 01454 Radeberg
- Germany
| | | | - Anne Naumann
- Technische Universität Dresden
- Faculty of Medicine Carl Gustav Carus
- Department of Nuclear Medicine
- 01307 Dresden
- Germany
| | - Jörg Kotzerke
- Technische Universität Dresden
- Faculty of Medicine Carl Gustav Carus
- Department of Nuclear Medicine
- 01307 Dresden
- Germany
| |
Collapse
|
5
|
99mTc-labeled HYNIC-DAPI causes plasmid DNA damage with high efficiency. PLoS One 2014; 9:e104653. [PMID: 25098953 PMCID: PMC4123991 DOI: 10.1371/journal.pone.0104653] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/11/2014] [Indexed: 12/31/2022] Open
Abstract
99mTc is the standard radionuclide used for nuclear medicine imaging. In addition to gamma irradiation, 99mTc emits low-energy Auger and conversion electrons that deposit their energy within nanometers of the decay site. To study the potential for DNA damage, direct DNA binding is required. Plasmid DNA enables the investigation of the unprotected interactions between molecules and DNA that result in single-strand breaks (SSBs) or double-strand breaks (DSBs); the resulting DNA fragments can be separated by gel electrophoresis and quantified by fluorescent staining. This study aimed to compare the plasmid DNA damage potential of a 99mTc-labeled HYNIC-DAPI compound with that of 99mTc pertechnetate (99mTcO4−). pUC19 plasmid DNA was irradiated for 2 or 24 hours. Direct and radical-induced DNA damage were evaluated in the presence or absence of the radical scavenger DMSO. For both compounds, an increase in applied activity enhanced plasmid DNA damage, which was evidenced by an increase in the open circular and linear DNA fractions and a reduction in the supercoiled DNA fraction. The number of SSBs elicited by 99mTc-HYNIC-DAPI (1.03) was twice that caused by 99mTcO4− (0.51), and the number of DSBs increased fivefold in the 99mTc-HYNIC-DAPI-treated sample compared with the 99mTcO4− treated sample (0.02 to 0.10). In the presence of DMSO, the numbers of SSBs and DSBs decreased to 0.03 and 0.00, respectively, in the 99mTcO4– treated samples, whereas the numbers of SSBs and DSBs were slightly reduced to 0.95 and 0.06, respectively, in the 99mTc-HYNIC-DAPI-treated samples. These results indicated that 99mTc-HYNIC-DAPI induced SSBs and DSBs via a direct interaction of the 99mTc-labeled compound with DNA. In contrast to these results, 99mTcO4− induced SSBs via radical formation, and DSBs were formed by two nearby SSBs. The biological effectiveness of 99mTc-HYNIC-DAPI increased by approximately 4-fold in terms of inducing SSBs and by approximately 10-fold in terms of inducing DSBs.
Collapse
|
6
|
Cambien B, Franken PR, Lamit A, Mauxion T, Richard-Fiardo P, Guglielmi J, Crescence L, Mari B, Pourcher T, Darcourt J, Bardiès M, Vassaux G. ⁹⁹mTcO₄--, auger-mediated thyroid stunning: dosimetric requirements and associated molecular events. PLoS One 2014; 9:e92729. [PMID: 24663284 PMCID: PMC3963936 DOI: 10.1371/journal.pone.0092729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/25/2014] [Indexed: 01/31/2023] Open
Abstract
Low-energy Auger and conversion electrons deposit their energy in a very small volume (a few nm3) around the site of emission. From a radiotoxicological point of view the effects of low-energy electrons on normal tissues are largely unknown, understudied, and generally assumed to be negligible. In this context, the discovery that the low-energy electron emitter, 99mTc, can induce stunning on primary thyrocytes in vitro, at low absorbed doses, is intriguing. Extrapolated in vivo, this observation suggests that a radioisotope as commonly used in nuclear medicine as 99mTc may significantly influence thyroid physiology. The aims of this study were to determine whether 99mTc pertechnetate (99mTcO4−) is capable of inducing thyroid stunning in vivo, to evaluate the absorbed dose of 99mTcO4− required to induce this stunning, and to analyze the biological events associated/concomitant with this effect. Our results show that 99mTcO4−–mediated thyroid stunning can be observed in vivo in mouse thyroid. The threshold of the absorbed dose in the thyroid required to obtain a significant stunning effect is in the range of 20 Gy. This effect is associated with a reduced level of functional Na/I symporter (NIS) protein, with no significant cell death. It is reversible within a few days. At the cellular and molecular levels, a decrease in NIS mRNA, the generation of double-strand DNA breaks, and the activation of the p53 pathway are observed. Low-energy electrons emitted by 99mTc can, therefore, induce thyroid stunning in vivo in mice, if it is exposed to an absorbed dose of at least 20 Gy, a level unlikely to be encountered in clinical practice. Nevertheless this report presents an unexpected effect of low-energy electrons on a normal tissue in vivo, and provides a unique experimental setup to understand the fine molecular mechanisms involved in their biological effects.
Collapse
Affiliation(s)
- Béatrice Cambien
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, CEA, Nice, France
- Université de Nice-Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Department of nuclear medicine, Nice, France
- * E-mail:
| | - Philippe R. Franken
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, CEA, Nice, France
- Université de Nice-Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Department of nuclear medicine, Nice, France
| | - Audrey Lamit
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, CEA, Nice, France
- Université de Nice-Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Department of nuclear medicine, Nice, France
| | - Thibault Mauxion
- UMR 1037 INSERM/UPS, Centre de Recherche en Cancérologie, Toulouse, France
| | - Peggy Richard-Fiardo
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, CEA, Nice, France
- Université de Nice-Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Department of nuclear medicine, Nice, France
| | - Julien Guglielmi
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, CEA, Nice, France
- Université de Nice-Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Department of nuclear medicine, Nice, France
| | - Lydie Crescence
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, CEA, Nice, France
- Université de Nice-Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Department of nuclear medicine, Nice, France
| | - Bernard Mari
- Université de Nice-Sophia Antipolis, Nice, France
- Institut de Pharmacologie Moléculaire et Cellulaire-IPMC, CNRS UMR 7275, Sophia Antipolis, France
| | - Thierry Pourcher
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, CEA, Nice, France
- Université de Nice-Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Department of nuclear medicine, Nice, France
| | - Jacques Darcourt
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, CEA, Nice, France
- Université de Nice-Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Department of nuclear medicine, Nice, France
| | - Manuel Bardiès
- UMR 1037 INSERM/UPS, Centre de Recherche en Cancérologie, Toulouse, France
| | - Georges Vassaux
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, CEA, Nice, France
- Université de Nice-Sophia Antipolis, Nice, France
- Centre Antoine Lacassagne, Department of nuclear medicine, Nice, France
| |
Collapse
|