1
|
Yu Y, Feng T, Qiu H, Gu Y, Chen Q, Zuo C, Ma H. Simultaneous photoacoustic and ultrasound imaging: A review. ULTRASONICS 2024; 139:107277. [PMID: 38460216 DOI: 10.1016/j.ultras.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
Photoacoustic imaging (PAI) is an emerging biomedical imaging technique that combines the advantages of optical and ultrasound imaging, enabling the generation of images with both optical resolution and acoustic penetration depth. By leveraging similar signal acquisition and processing methods, the integration of photoacoustic and ultrasound imaging has introduced a novel hybrid imaging modality suitable for clinical applications. Photoacoustic-ultrasound imaging allows for non-invasive, high-resolution, and deep-penetrating imaging, providing a wealth of image information. In recent years, with the deepening research and the expanding biomedical application scenarios of photoacoustic-ultrasound bimodal systems, the immense potential of photoacoustic-ultrasound bimodal imaging in basic research and clinical applications has been demonstrated, with some research achievements already commercialized. In this review, we introduce the principles, technical advantages, and biomedical applications of photoacoustic-ultrasound bimodal imaging techniques, specifically focusing on tomographic, microscopic, and endoscopic imaging modalities. Furthermore, we discuss the future directions of photoacoustic-ultrasound bimodal imaging technology.
Collapse
Affiliation(s)
- Yinshi Yu
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
| | - Ting Feng
- Academy for Engineering & Technology, Fudan University, Shanghai 200433,China.
| | - Haixia Qiu
- First Medical Center of PLA General Hospital, Beijing, China
| | - Ying Gu
- First Medical Center of PLA General Hospital, Beijing, China
| | - Qian Chen
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
| | - Chao Zuo
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China.
| | - Haigang Ma
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China.
| |
Collapse
|
2
|
Xu Z, Locke CS, Morris R, Jamison D, Kozloff KM, Wang X. Development of a semi-anthropomorphic photoacoustic calcaneus phantom based on nano computed tomography and stereolithography 3D printing. J Orthop Res 2024; 42:647-660. [PMID: 37804209 PMCID: PMC10932887 DOI: 10.1002/jor.25702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/28/2023] [Accepted: 10/05/2023] [Indexed: 10/09/2023]
Abstract
Osteoporosis is a major public health threat with significant physical, psychosocial, and financial consequences. The calcaneus bone has been used as a measurement site for risk prediction of osteoporosis by noninvasive quantitative ultrasound (QUS). By adding optical contrast to QUS, our previous studies indicate that a combination of photoacoustic (PA) and QUS, that is, PAQUS, provides a novel opportunity to assess the health of human calcaneus. Calibration of the PAQUS system is crucial to realize quantitative and repeatable measurements of the calcaneus. Therefore, a phantom which simulates the optical, ultrasound, and architectural properties of the human calcaneus, for PAQUS system calibration, is required. Additionally, a controllable phantom offers researchers a versatile framework for developing versatile structures, allowing more controlled assessment of how varying bone structures cause defined alterations in PA and QUS signals. In this work, we present the first semi-anthropomorphic calcaneus phantom for PAQUS. The phantom was developed based on nano computed-tomography (nano-CT) and stereolithography 3D printing, aiming to maximize accuracy in the approximation of both trabecular and cortical bone microstructures. Compared with the original digital input calcaneus model from a human cadaveric donor, the printed model achieved accuracies of 71.15% in total structure and 87.21% in bone volume fraction. Inorganic materials including synthetic blood, mineral oil, intralipid, and agar gel were used to model the substitutes of bone marrow and soft tissue, filling and covering the calcaneus phantom. The ultrasound and optical properties of this phantom were measured, and the results were consistent with those measured by a commercialized device and from previous in vivo studies. In addition, a short-term stability test was conducted for this phantom, demonstrating that the optical and ultrasound properties of the phantom were stable without significant variation over 1 month. This semi-anthropomorphic calcaneus phantom shows structural, ultrasound, and optical properties similar to those from a human calcaneus in vivo and, thereby, can serve as an effective source for equipment calibration and the comprehensive study of human patients.
Collapse
Affiliation(s)
- Zhanpeng Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Conor S. Locke
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - DeAndre Jamison
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kenneth M. Kozloff
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
3
|
Liu S, Wang T, Zheng X, Zhu Y, Tian C. On the imaging depth limit of photoacoustic tomography in the visible and first near-infrared windows. OPTICS EXPRESS 2024; 32:5460-5480. [PMID: 38439272 DOI: 10.1364/oe.513538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/21/2024] [Indexed: 03/06/2024]
Abstract
It is well known that photoacoustic tomography (PAT) can circumvent the photon scattering problem in optical imaging and achieve high-contrast and high-resolution imaging at centimeter depths. However, after two decades of development, the long-standing question of the imaging depth limit of PAT in biological tissues remains unclear. Here we propose a numerical framework for evaluating the imaging depth limit of PAT in the visible and the first near-infrared windows. The established framework simulates the physical process of PAT and consists of seven modules, including tissue modelling, photon transportation, photon to ultrasound conversion, sound field propagation, signal reception, image reconstruction, and imaging depth evaluation. The framework can simulate the imaging depth limits in general tissues, such as the human breast, the human abdomen-liver tissues, and the rodent whole body and provide accurate evaluation results. The study elucidates the fundamental imaging depth limit of PAT in biological tissues and can provide useful guidance for practical experiments.
Collapse
|
4
|
Xu W, Xie W, Yu D, Sun H, Gu Y, Tao X, Qian M, Cheng L, Wang H, Cheng Q. Theoretical and experimental study of attenuation in cancellous bone. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11526. [PMID: 38505736 PMCID: PMC10949015 DOI: 10.1117/1.jbo.29.s1.s11526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/21/2024]
Abstract
Significance Photoacoustic (PA) technology shows great potential for bone assessment. However, the PA signals in cancellous bone are complex due to its complex composition and porous structure, making such signals challenging to apply directly in bone analysis. Aim We introduce a photoacoustic differential attenuation spectrum (PA-DAS) method to separate the contribution of the acoustic propagation path to the PA signal from that of the source, and theoretically and experimentally investigate the propagation attenuation characteristics of cancellous bone. Approach We modified Biot's theory by accounting for the high frequency and viscosity. In parallel with the rabbit osteoporosis model, we build an experimental PA-DAS system featuring an eccentric excitation differential detection mechanism. Moreover, we extract a PA-DAS quantization parameter-slope-to quantify the attenuation of high- and low-frequency components. Results The results show that the porosity of cancellous bone can be evaluated by fast longitude wave attenuation at different frequencies and the PA-DAS slope of the osteoporotic group is significantly lower compared with the normal group (**p < 0.01 ). Conclusions Findings demonstrate that PA-DAS effectively differentiates osteoporotic bone from healthy bone, facilitating quantitative assessment of bone mineral density, and osteoporosis diagnosis.
Collapse
Affiliation(s)
- Wenyi Xu
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
| | - Weiya Xie
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
| | - Dong Yu
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
| | - Haohan Sun
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
| | - Ying Gu
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
| | - Xingliang Tao
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
| | - Menglu Qian
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
| | - Liming Cheng
- Tongji University, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Shanghai, China
| | - Hao Wang
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
| | - Qian Cheng
- Tongji University, Institute of Acoustics, School of Physics Science and Engineering, Shanghai, China
- National Key Laboratory of Autonomous Intelligent Unmanned Systems, Shanghai, China
- Frontiers Science Center for Intelligent Autonomous Systems, Ministry of Education, Shanghai, China
| |
Collapse
|
5
|
Xie D, Dong W, Zheng J, Tian C. Spatially-variant image deconvolution for photoacoustic tomography. OPTICS EXPRESS 2023; 31:21641-21657. [PMID: 37381257 DOI: 10.1364/oe.486846] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023]
Abstract
Photoacoustic tomography (PAT) system can reconstruct images of biological tissues with high resolution and contrast. However, in practice, the PAT images are usually degraded by spatially variant blur and streak artifacts due to the non-ideal imaging conditions and chosen reconstruction algorithms. Therefore, in this paper, we propose a two-phase restoration method to progressively improve the image quality. In the first phase, we design a precise device and measuring method to obtain spatially variant point spread function samples at preset positions of the PAT system in image domain, then we adopt principal component analysis and radial basis function interpolation to model the entire spatially variant point spread function. Afterwards, we propose a sparse logarithmic gradient regularized Richardson-Lucy (SLG-RL) algorithm to deblur the reconstructed PAT images. In the second phase, we present a novel method called deringing which is also based on SLG-RL to remove the streak artifacts. Finally, we evaluate our method with simulation, phantom and in vivo experiments, respectively. All the results show that our method can significantly improve the quality of PAT images.
Collapse
|
6
|
Gonzalez EA, Bell MAL. Photoacoustic Imaging and Characterization of Bone in Medicine: Overview, Applications, and Outlook. Annu Rev Biomed Eng 2023; 25:207-232. [PMID: 37000966 DOI: 10.1146/annurev-bioeng-081622-025405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Photoacoustic techniques have shown promise in identifying molecular changes in bone tissue and visualizing tissue microstructure. This capability represents significant advantages over gold standards (i.e., dual-energy X-ray absorptiometry) for bone evaluation without requiring ionizing radiation. Instead, photoacoustic imaging uses light to penetrate through bone, followed by acoustic pressure generation, resulting in highly sensitive optical absorption contrast in deep biological tissues. This review covers multiple bone-related photoacoustic imaging contributions to clinical applications, spanning bone cancer, joint pathologies, spinal disorders, osteoporosis, bone-related surgical guidance, consolidation monitoring, and transsphenoidal and transcranial imaging. We also present a summary of photoacoustic-based techniques for characterizing biomechanical properties of bone, including temperature, guided waves, spectral parameters, and spectroscopy. We conclude with a future outlook based on the current state of technological developments, recent achievements, and possible new directions.
Collapse
Affiliation(s)
- Eduardo A Gonzalez
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Muyinatu A Lediju Bell
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Electrical and Computer Engineering and Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA;
| |
Collapse
|
7
|
Sadoughi S, Bevill G, Morgan EF, Palepu V, Keaveny TM, Wear KA. Biomechanical structure-function relations for human trabecular bone - comparison of calcaneus, femoral neck, greater trochanter, proximal tibia, and vertebra. Comput Methods Biomech Biomed Engin 2023; 26:508-516. [PMID: 35579530 PMCID: PMC9669279 DOI: 10.1080/10255842.2022.2069465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 04/04/2022] [Accepted: 04/20/2022] [Indexed: 11/03/2022]
Abstract
MicroCT-based finite element models were used to compute power law relations for uniaxial compressive yield stress versus bone volume fraction for 78 cores of human trabecular bone from five anatomic sites. The leading coefficient of the power law for calcaneus differed from those for most of the other sites (p < 0.05). However, after normalizing by site-specific mean values, neither the leading coefficient (p > 0.5) nor exponent (p > 0.5) differed among sites, suggesting that a given percentage deviation from mean bone volume fraction has the same mechanical consequence for all sites investigated. These findings help explain the success of calcaneal x-ray and ultrasound measurements for predicting hip fracture risk.
Collapse
Affiliation(s)
- Saghi Sadoughi
- Department of Mechanical Engineering, University of California, Berkeley, CA
| | - Grant Bevill
- Mechanical Engineering Department, University of North Florida, Jacksonville, FL
| | - Elise F Morgan
- Departments of Mechanical Engineering and Biomedical Engineering, Boston University, Boston, MA
| | - Vivek Palepu
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD
| | - Tony M Keaveny
- Department of Mechanical Engineering, University of California, Berkeley, CA
- Department of Bioengineering, University of California, Berkeley, CA
| | - Keith A Wear
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD
| |
Collapse
|
8
|
Feng T, Zhu Y, Gao X, Xie W, Ma H, Cheng L, Ta D, Cheng Q. Nakagami statistics-based photoacoustic spectroscopy used for label-free assessment of bone tissue. OPTICS LETTERS 2023; 48:656-659. [PMID: 36723556 DOI: 10.1364/ol.477011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/29/2022] [Indexed: 06/18/2023]
Abstract
Quick identification of abnormal molecular metabolism of bone tissues is challenging. Photoacoustic (PA) spectroscopy techniques have great potential in molecular imaging. However, most of them are amplitude-dependent and easily affected by the light deposition, especially for bone tissues with high optical scattering. In this Letter, we propose a Nakagami statistics-based PA spectroscopy (NSPS) method for characterizing molecules in bone tissues. We indicate that the NSPS curve can intelligently identify changes in the content of molecules in bone tissues, with a high disturbance-resisting ability. The NSPS has remarkable potential for use in the early and rapid detection of bone diseases.
Collapse
|
9
|
Tong L, Zhang S, Huang R, Yi H, Wang JW. Extracellular vesicles as a novel photosensitive drug delivery system for enhanced photodynamic therapy. Front Bioeng Biotechnol 2022; 10:1032318. [PMID: 36237218 PMCID: PMC9550933 DOI: 10.3389/fbioe.2022.1032318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising non-invasive therapeutic approach that utilizes photosensitizers (PSs) to generate highly reactive oxygen species (ROS), including singlet oxygen, for removal of targeted cells. PDT has been proven efficacious for the treatment of several diseases, including cancer, cardiovascular disease, inflammatory bowel disease, and diabetic ocular disease. However, the therapeutic efficacy of PDT is limited and often accompanied by side effects, largely due to non-specific delivery of PSs beyond the desired lesion site. Over the past decade, despite various nanoparticular drug delivery systems developed have markedly improved the treatment efficacy while reducing the off-target effects of PSs, concerns over the safety and toxicity of synthetic nanomaterials following intravenous administration are raised. Extracellular vesicles (EVs), a type of nanoparticle released from cells, are emerging as a natural drug delivery system for PSs in light of EV's potentially low immunogenicity and biocompatibility compared with other nanoparticles. This review aims to provide an overview of the research progress in PS delivery systems and propose EVs as an alternative PS delivery system for PDT. Moreover, the challenges and future perspectives of EVs for PS delivery are discussed.
Collapse
Affiliation(s)
- Lingjun Tong
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Sitong Zhang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rong Huang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Xie W, Feng T, Yu D, Ta D, Cheng L, Cheng Q. Photoacoustic characterization of bone physico-chemical information. BIOMEDICAL OPTICS EXPRESS 2022; 13:2668-2681. [PMID: 35774314 PMCID: PMC9203098 DOI: 10.1364/boe.457278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Osteoporosis usually alters the chemical composition and physical microstructure of bone. Currently, most clinical techniques for bone assessment are focused on the either bone microstructure or bone mineral density (BMD). In this study, a novel multi-wavelength photoacoustic time-frequency spectral analysis (MWPA-TFSA) method was introduced based on the optical absorption spectra and photoacoustic effects of biological macromolecules, which evaluates changes in bone chemical composition and microstructure. The results demonstrated that osteoporotic bones had decreased BMD, more lipids, and wider trabecular separation filled with larger marrow clusters, which were consistent with multiple gold-standard results, suggesting that the MWPA-TFSA method has the potential to provide a thorough bone physico-chemical information evaluation noninvasively and nonradiatively.
Collapse
Affiliation(s)
- Weiya Xie
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, China
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education; Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- These authors contributed equally to this paper
| | - Ting Feng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, China
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
- These authors contributed equally to this paper
| | - Dong Yu
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, China
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Liming Cheng
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education; Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Cheng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, China
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education; Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, China
| |
Collapse
|
11
|
Feng T, Xie Y, Xie W, Chen Y, Wang P, Li L, Han J, Ta D, Cheng L, Cheng Q. Characterization of multi-biomarkers for bone health assessment based on photoacoustic physicochemical analysis method. PHOTOACOUSTICS 2022; 25:100320. [PMID: 35004172 PMCID: PMC8717597 DOI: 10.1016/j.pacs.2021.100320] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/20/2021] [Accepted: 12/05/2021] [Indexed: 05/12/2023]
Abstract
Photoacoustic (PA) techniques are potential alternatives to histopathology. The physicochemical spectrogram (PCS) generated by the PA measurement at multiple wavelengths can presents the morphology and chemical composition target at multi-biomarkers simultaneously. In this work, via multi-wavelength PA measurements performed on rabbit bone models, we investigated the feasibility of using PCSs for bone health assessment. A comprehensive analysis of the PCSs, termed PA physicochemical analysis (PAPCA), was conducted. The "slope" and "relative content" were used as the PAPCA-quantified parameters to characterize the changes in the physical and chemical properties of bone tissue, respectively. The findings are consistent well with the gold-standard imaging results. It demonstrated that the PAPCA can be used to characterize both the microstructure and content of multi-biomarkers which highly related with bone health. Considering the PA technique is noninvasive and radiation-free, it has great potential in the implementation and monitoring of bone diseases progression.
Collapse
Affiliation(s)
- Ting Feng
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yejing Xie
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weiya Xie
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yingna Chen
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Peng Wang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Lan Li
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Jing Han
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| | - Liming Cheng
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Qian Cheng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
12
|
Feng T, Ge Y, Xie Y, Xie W, Liu C, Li L, Ta D, Jiang Q, Cheng Q. Detection of collagen by multi-wavelength photoacoustic analysis as a biomarker for bone health assessment. PHOTOACOUSTICS 2021; 24:100296. [PMID: 34522607 PMCID: PMC8426564 DOI: 10.1016/j.pacs.2021.100296] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/06/2021] [Accepted: 08/24/2021] [Indexed: 05/26/2023]
Abstract
Collagen is an important biomarker of osteoporosis progression. Noninvasive, multispectral, photoacoustic (PA) techniques use pulsed laser light to induce PA signals to facilitate the visualization of chemical components that are strongly related to tissue health. In this study, the feasibility of multi-wavelength PA (MWPA) measurement of the collagen in bone, using the wavelength range of 1300-1800 nm, was investigated. First, the feasibility of this approach for detecting the collagen content of bone was demonstrated by means of numerical simulation. Then, ex vivo experiments were conducted on both animal and human bone specimens with different bone densities using the MWPA method. The relative collagen content was extracted and compared with the results of micro-computed tomography (micro-CT) and histology. The results showed that the "relative collagen content" parameter obtained using the MWPA approach correlated well with the bone volume ratio obtained from micro-CT images and histological analysis results. This study highlights the potential of the proposed PA technique for determining the collagen content of bones as a biomarker for bone health assessment.
Collapse
Affiliation(s)
- Ting Feng
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuxiang Ge
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, Jiangsu, China
- Department of Orthopedic Surgery, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Yejing Xie
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weiya Xie
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chengcheng Liu
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Lan Li
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Qian Cheng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
13
|
Feng T, Zhu Y, Morris R, kozloff KM, Wang X. The feasibility study of the transmission mode photoacoustic measurement of human calcaneus bone in vivo. PHOTOACOUSTICS 2021; 23:100273. [PMID: 34745881 PMCID: PMC8552339 DOI: 10.1016/j.pacs.2021.100273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 05/26/2023]
Abstract
The photoacoustic (PA) technique is uniquely positioned for biomedical applications primarily due to its ability to visualize optical absorption contrast in deep tissue at ultrasound resolution. In this work, via both three-dimensional (3D) numerical simulations and in vivo experiments on human subjects, we investigated the possibility of PA measurement of human calcaneus bones in vivo in a non-invasive manner, as well as its feasibility to differentiate osteoporosis patients from normal subjects. The results from the simulations and the experiments both demonstrated that, when one side of the heel is illuminated by laser with light fluence under the ANSI safety limit, the PA signal generated in the human calcaneus bone can be detected by an ultrasonic transducer at the other side of the heel (i.e. transmission mode). Quantitative power spectral analyses of the calcaneus bone PA signals were also conducted, demonstrating that the microarchitectural changes in calcaneus bone due to osteoporosis can be detected, as reflected by enhanced high frequency components in detected PA bone signal. Further statistical analysis of the experimental results from 10 osteoporosis patients and 10 healthy volunteers showed that the weighted frequency as a quantified PA spectral parameter can differentiate the two subject groups with statistical significance.
Collapse
Affiliation(s)
- Ting Feng
- Department of Biomedical Engineering, University of Michigan Medical School, MI 48109, USA
| | - Yunhao Zhu
- Department of Biomedical Engineering, University of Michigan Medical School, MI 48109, USA
| | | | - Kenneth M. kozloff
- Department of Biomedical Engineering, University of Michigan Medical School, MI 48109, USA
- Department of Orthopaedic Surgery, University of Michigan Medical School, MI 48109, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan Medical School, MI 48109, USA
- Department of Radiology, University of Michigan Medical School, MI 48109, USA
| |
Collapse
|
14
|
Xie W, Feng T, Zhang M, Li J, Ta D, Cheng L, Cheng Q. Wavelet transform-based photoacoustic time-frequency spectral analysis for bone assessment. PHOTOACOUSTICS 2021; 22:100259. [PMID: 33777692 PMCID: PMC7985564 DOI: 10.1016/j.pacs.2021.100259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 05/08/2023]
Abstract
In this study, we investigated the feasibility of using photoacoustic time-frequency spectral analysis (PA-TFSA) for evaluating the bone mineral density (BMD) and bone structure. Simulations and ex vivo experiments on bone samples with different BMDs and mean trabecular thickness (MTT) were conducted. All photoacoustic signals were processed using the wavelet transform-based PA-TFSA. The power-weighted mean frequency (PWMF) was evaluated to obtain the main frequency component at different times. The y-intercept, midband-fit, and slope of the linearly fitted curve of the PWMF over time were also quantified. The results show that the osteoporotic bone samples with lower BMD and thinner MTT have higher frequency components and lower acoustic frequency attenuation over time, thus higher y-intercept, midband-fit, and slope. The midband-fit and slope were found to be sensitive to the BMD; therefore, both parameters could be used to distinguish between osteoporotic and normal bones (p < 0.05).
Collapse
Key Words
- ARTB, area ratio of trabecular bone
- BMD, bone mineral density
- Bone assessment
- CWT, continuous wavelet transform
- DEXA, dual energy X-ray absorptiometry
- EDTA, ethylenediaminetetraacetic acid
- MTT, mean trabecular thickness
- PA, photoacoustic
- PA-TFS, photoacoustic time-frequency spectrum
- PA-TFSA, photoacoustic time-frequency spectral analysis
- PWMF, power-weighted mean frequency
- Photoacoustic measurement
- QUS, quantitative ultrasound
- ROI, region of interest
- Time-frequency spectral analysis
- US, ultrasound
- Wavelet transform
Collapse
Affiliation(s)
- Weiya Xie
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Ting Feng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Mengjiao Zhang
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
| | - Jiayan Li
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai, PR China
| | - Liming Cheng
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Qian Cheng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, PR China
| |
Collapse
|
15
|
Tian C, Zhang C, Zhang H, Xie D, Jin Y. Spatial resolution in photoacoustic computed tomography. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:036701. [PMID: 33434890 DOI: 10.1088/1361-6633/abdab9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Photoacoustic computed tomography (PACT) is a novel biomedical imaging modality and has experienced fast developments in the past two decades. Spatial resolution is an important criterion to measure the imaging performance of a PACT system. Here we survey state-of-the-art literature on the spatial resolution of PACT and analyze resolution degradation models from signal generation, propagation, reception, to image reconstruction. Particularly, the impacts of laser pulse duration, acoustic attenuation, acoustic heterogeneity, detector bandwidth, detector aperture, detector view angle, signal sampling, and image reconstruction algorithms are reviewed and discussed. Analytical expressions of point spread functions related to these impacting factors are summarized based on rigorous mathematical formulas. State-of-the-art approaches devoted to enhancing spatial resolution are also reviewed. This work is expected to elucidate the concept of spatial resolution in PACT and inspire novel image quality enhancement techniques.
Collapse
Affiliation(s)
- Chao Tian
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Chenxi Zhang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Haoran Zhang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Dan Xie
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yi Jin
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|