1
|
Zhang Y, Zhan S, Liu K, Qiao M, Liu N, Qin R, Xiao L, You P, Jing W, Zheng N. Heterogeneous Hydrogenation with Hydrogen Spillover Enabled by Nitrogen Vacancies on Boron Nitride-Supported Pd Nanoparticles. Angew Chem Int Ed Engl 2023; 62:e202217191. [PMID: 36573904 DOI: 10.1002/anie.202217191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 12/28/2022]
Abstract
Heterogeneous hydrogenation with hydrogen spillover has been demonstrated as an effective route to achieve high selectivity towards target products. More effort should be paid to understand the complicated correlation between the nature of supports and hydrogenation involving hydrogen spillover. Herein, we report the development of the hydrogenation system of hexagonal boron nitride (h-BN)-supported Pd nanoparticles for the hydrogenation of aldehydes/ketones to alcohols with hydrogen spillover. Nitrogen vacancies in h-BN determine the feasibility of hydrogen spillover from Pd to h-BN. The hydrogenation of aldehydes/ketones with hydrogen spillover from Pd proceeds on nitrogen vacancies on h-BN. The weak adsorption of alcohols to h-BN inhibits the deep hydrogenation of aldehydes/ketones, thus leading to high catalytic selectivity to alcohols. Moreover, the hydrogen spillover-based hydrogenation mechanism makes the catalyst system exhibit a high tolerance to CO poisoning.
Collapse
Affiliation(s)
- Yazhou Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shaoqi Zhan
- Department of Chemistry-BMC, Uppsala University, BMC Box 576, 75123, Uppsala, Sweden.,Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK
| | - Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Mengfei Qiao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ning Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Liangping Xiao
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen, 361005, China
| | - Pengyao You
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wentong Jing
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361102, China
| |
Collapse
|
2
|
Poths P, Li G, Masubuchi T, Morgan HWT, Zhang Z, Alexandrova AN, Anderson SL. Got Coke? Self-Limiting Poisoning Makes an Ultra Stable and Selective Sub-Nano Cluster Catalyst. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Patricia Poths
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Guangjing Li
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Tsugunosuke Masubuchi
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Harry W. T. Morgan
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Zisheng Zhang
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Anastassia N. Alexandrova
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Scott L. Anderson
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
3
|
Jing W, Shen H, Qin R, Wu Q, Liu K, Zheng N. Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chem Rev 2022; 123:5948-6002. [PMID: 36574336 DOI: 10.1021/acs.chemrev.2c00569] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The surface and interface coordination structures of heterogeneous metal catalysts are crucial to their catalytic performance. However, the complicated surface and interface structures of heterogeneous catalysts make it challenging to identify the molecular-level structure of their active sites and thus precisely control their performance. To address this challenge, atomically dispersed metal catalysts (ADMCs) and ligand-protected atomically precise metal clusters (APMCs) have been emerging as two important classes of model heterogeneous catalysts in recent years, helping to build bridge between homogeneous and heterogeneous catalysis. This review illustrates how the surface and interface coordination chemistry of these two types of model catalysts determines the catalytic performance from multiple dimensions. The section of ADMCs starts with the local coordination structure of metal sites at the metal-support interface, and then focuses on the effects of coordinating atoms, including their basicity and hardness/softness. Studies are also summarized to discuss the cooperativity achieved by dual metal sites and remote effects. In the section of APMCs, the roles of surface ligands and supports in determining the catalytic activity, selectivity, and stability of APMCs are illustrated. Finally, some personal perspectives on the further development of surface coordination and interface chemistry for model heterogeneous metal catalysts are presented.
Collapse
Affiliation(s)
- Wentong Jing
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hui Shen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingyuan Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
4
|
Yan H, Xiang H, Liu J, Cheng R, Ye Y, Han Y, Yao C. The Factors Dictating Properties of Atomically Precise Metal Nanocluster Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200812. [PMID: 35403353 DOI: 10.1002/smll.202200812] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Metal nanoparticles occupy an important position in electrocatalysis. Unfortunately, by using conventional synthetic methodology, it is a great challenge to realize the monodisperse composition/structure of metal nanoparticles at the atomic level, and to establish correlations between the catalytic properties and the structure of individual catalyst particles. For the study of well-defined nanocatalysts, great advances have been made for the successful synthesis of nanoparticles with atomic precision, notably ligand-passivated metal nanoclusters. Such well-defined metal nanoclusters have become a type of model catalyst and have shown great potential in catalysis research. In this review, the authors summarize the advances in the utilization of atomically precise metal nanoclusters for electrocatalysis. In particular, the factors (e.g., size, metal doping/alloying, ligand engineering, support materials as well as charge state of clusters) affecting selectivity and activity of catalysts are highlighted. The authors aim to provide insightful guidelines for the rational design of electrocatalysts with high performance and perspectives on potential challenges and opportunities in this emerging field.
Collapse
Affiliation(s)
- Hao Yan
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Huixin Xiang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Jiaohu Liu
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Ranran Cheng
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Yongqi Ye
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Yunhu Han
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Chuanhao Yao
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| |
Collapse
|
5
|
Guo Y, Huang Y, Zeng B, Han B, Akri M, Shi M, Zhao Y, Li Q, Su Y, Li L, Jiang Q, Cui YT, Li L, Li R, Qiao B, Zhang T. Photo-thermo semi-hydrogenation of acetylene on Pd 1/TiO 2 single-atom catalyst. Nat Commun 2022; 13:2648. [PMID: 35551203 PMCID: PMC9098498 DOI: 10.1038/s41467-022-30291-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Semi-hydrogenation of acetylene in excess ethylene is a key industrial process for ethylene purification. Supported Pd catalysts have attracted most attention due to their superior intrinsic activity but often suffer from low selectivity. Pd single-atom catalysts (SACs) are promising to significantly improve the selectivity, but the activity needs to be improved and the feasible preparation of Pd SACs remains a grand challenge. Here, we report a simple strategy to construct Pd1/TiO2 SACs by selectively encapsulating the co-existed small amount of Pd nanoclusters/nanoparticles based on their different strong metal-support interaction (SMSI) occurrence conditions. In addition, photo-thermo catalysis has been applied to this process where a much-improved catalytic activity was obtained. Detailed characterization combined with DFT calculation suggests that photo-induced electrons transferred from TiO2 to the adjacent Pd atoms facilitate the activation of acetylene. This work offers an opportunity to develop highly stable Pd SACs for efficient catalytic semi-hydrogenation process. Semi-hydrogenation of acetylene in excess ethylene is a key industrial process for ethylene purification. Here the authors develop highly stable Pd1/TiO2 single-atom catalyst for photo-thermo semi-hydrogenation of acetylene.
Collapse
Affiliation(s)
- Yalin Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yike Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bin Zeng
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Bing Han
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mohcin Akri
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Ming Shi
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yue Zhao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qinghe Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yang Su
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Lin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qike Jiang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yi-Tao Cui
- SANKA High Technology Co. Ltd. 90-1, Tatsuno, Hyogo, Japan
| | - Lei Li
- Synchrotron Radiation Research Center, Hyogo Science and Technology Association, Hyogo, Japan
| | - Rengui Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Botao Qiao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
6
|
Li K, Qin R, Liu K, Zhou W, Liu N, Zhang Y, Liu S, Chen J, Fu G, Zheng N. Carbon Deposition on Heterogeneous Pt Catalysts Promotes the Selective Hydrogenation of Halogenated Nitroaromatics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52193-52201. [PMID: 34369152 DOI: 10.1021/acsami.1c11548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pt-based heterogeneous metal catalysts are commonly used in the hydrogenation of nitro groups. However, the continuous large metal domain size and the complex interaction between the substrates and metal surface usually inevitably result in side reactions, such as dehalogenation of halogenated nitroaromatics. In this work, by simply treating the Pt-based catalysts with CO at elevated temperature, the Boudouard reaction taking place on Pt surface results in the deposition of carbon species thereon. The carbon deposition not only inhibits the dehalogenation by restricting the planar interaction of the aromatic group with the Pt surface that is segmented by C, the hydrogenation activity of the nitro group is also enhanced on the partially positively charged surface Pt sites created by the electron-withdrawing interstitial C. Such a simple treatment strategy is effective for fabricating Pt-based catalysts on different supports toward the selective hydrogenation of a wide range of halogenated nitroaromatics.
Collapse
Affiliation(s)
- Kaijia Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wenting Zhou
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ning Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yazhou Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shengjie Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jie Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gang Fu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
7
|
Liu K, Qin R, Zheng N. Insights into the Interfacial Effects in Heterogeneous Metal Nanocatalysts toward Selective Hydrogenation. J Am Chem Soc 2021; 143:4483-4499. [PMID: 33724821 DOI: 10.1021/jacs.0c13185] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heterogeneous metal catalysts are distinguished by their structure inhomogeneity and complexity. The chameleonic nature of heterogeneous metal catalysts have prevented us from deeply understanding their catalytic mechanisms at the molecular level and thus developing industrial catalysts with perfect catalytic selectivity toward desired products. This Perspective aims to summarize recent research advances in deciphering complicated interfacial effects in heterogeneous hydrogenation metal nanocatalysts toward the design of practical heterogeneous catalysts with clear catalytic mechanism and thus nearly perfect selectivity. The molecular insights on how the three key components (i.e., catalytic metal, support, and ligand modifier) of a heterogeneous metal nanocatalyst induce effective interfaces determining the hydrogenation activity and selectivity are provided. The interfaces influence not only the H2 activation pathway but also the interaction of substrates to be hydrogenated with catalytic metal surface and thus the hydrogen transfer process. As for alloy nanocatalysts, together with the electronic and geometric ensemble effects, spillover hydrogenation occurring on catalytically "inert" metal by utilizing hydrogen atom spillover from active metal is highlighted. The metal-support interface effects are then discussed with emphasis on the molecular involvement of ligands located at the metal-support interface as well as cationic species from the support in hydrogenation. The mechanisms of how organic modifiers, with the ability to induce both 3D steric and electronic effects, on metal nanocatalysts manipulate the hydrogenation pathways are demonstrated. A brief summary is finally provided together with a perspective on the development of enzyme-like heterogeneous hydrogenation metal catalysts.
Collapse
Affiliation(s)
- Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|