1
|
You M, Zhang S, Chen B, Mou F, Guan J. Magnetic-chemotactic hybrid microrobots with precise remote targeting capability. J Mater Chem B 2024; 12:10550-10558. [PMID: 39385667 DOI: 10.1039/d4tb01807a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Micro/nanorobots (MNRs) hold great promise for various applications due to their capability to execute complex tasks in hard-to-reach micro/nano cavities. However, the developed magnetic MNRs, as marionettes of external magnetic fields, lack built-in intelligence for self-targeting, while chemotactic MNRs suffer from limited self-targeting range. Here, we demonstrate magnetic-chemotactic ZnO/Fe-Ag Janus microrobots (JMRs) capable of rapid, remote self-targeting for bacterial elimination. The JMRs utilize the magnetic Fe engine for coarse navigation from a distance, allowing for external control to swiftly guide them to the vicinity of a hidden/uncharted target that establishes a local chemical gradient ([CO2] or [H+] gradient). Once in proximity, the inherent chemotaxis of the JMRs takes over, the chemotactic engine enables them to autonomously accumulate at the target site along the chemical gradient in high precision. Upon reaching the target, the ZnO/Fe-Ag JMRs can release Zn2+ and Ag+ to eliminate bacteria residing there. The proposed strategy of integrating on-board chemotaxis with external magnetic field-driven propulsion paves the way for efficient precise therapies using MNRs, especially in targeted drug/energy delivery involving remote hidden or uncharted targets.
Collapse
Affiliation(s)
- Ming You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Shuming Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Binjie Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China.
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, P. R. China
| |
Collapse
|
2
|
Bayati P, Mallory SA. Orbits, Spirals, and Trapped States: Dynamics of a Phoretic Janus Particle in a Radial Concentration Gradient. ACS NANO 2024; 18:23047-23057. [PMID: 39137334 DOI: 10.1021/acsnano.4c05076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
A long-standing goal in colloidal active matter is to understand how gradients in fuel concentration influence the motion of phoretic Janus particles. Here, we present a theoretical description of the motion of a spherical phoretic Janus particle in the presence of a radial gradient of the chemical solute driving self-propulsion. Radial gradients are a geometry relevant to many scenarios in active matter systems and naturally arise due to the presence of a point source or sink of fuel. We derive an analytical solution for the Janus particle's velocity and quantify the influence of the radial concentration gradient on the particle's trajectory. Compared to a phoretic Janus particle in a linear gradient in fuel concentration, we uncover a much richer set of dynamic behaviors including circular orbits and trapped stationary states. We identify the ratio of the phoretic mobilities between the two domains of the Janus particle as a central quantity in tuning their dynamics. Our results provide a path for developing optimum protocols for tuning the dynamics of phoretic Janus particles and mixing fluid at the microscale. In addition, this work suggests a method for quantifying the surface properties of phoretic Janus particles, which have proven to be challenging to probe experimentally.
Collapse
Affiliation(s)
- Parvin Bayati
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Stewart A Mallory
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
3
|
Cao C, Mou F, Yang M, Zhang S, Zhang D, Li L, Lan T, Xiao D, Luo W, Ma H, Guan J. Harnessing Disparities in Magnetic Microswarms: From Construction to Collaborative Tasks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401711. [PMID: 38868929 PMCID: PMC11321641 DOI: 10.1002/advs.202401711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Individual differences in size, experience, and task specialization in natural swarms often result in heterogeneity and hierarchy, facilitating efficient and coordinated task accomplishment. Drawing inspiration from this phenomenon, a general strategy is proposed for organizing magnetic micro/nanorobots (MNRs) with apparent differences in size, shape, and properties into cohesive microswarms with tunable heterogeneity, controlled spatial hierarchy, and collaborative tasking capability. In this strategy, disparate magnetic MNRs can be manipulated to show reversible transitions between synchronization and desynchronization by elaborately regulating parameter sets of the rotating magnetic field. Utilizing these transitions, alongside local robust hydrodynamic interactions, diverse heterospecific pairings of disparate magnetic MNRs can be organized into heterogeneous microswarms, and their spatial organization can be dynamically adjusted from egalitarian to leader-follower-like hierarchies on the fly, both in open space and complex microchannels. Furthermore, when specializing the disparate MNRs with distinct functions ("division of labor") such as sensing and drug carrying, they can execute precise drug delivery targeting unknown sites in a collaborative sensing-navigating-cargo dropping sequence, demonstrating significant potential for precise tumor treatment. These findings highlight the critical roles of attribute differences and hierarchical organization in designing efficient swarming micro/nanorobots for biomedical applications.
Collapse
Affiliation(s)
- Chuan Cao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing International School of Materials Science and EngineeringWuhan University of Technology122 Luoshi RoadWuhan430070P. R. China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing International School of Materials Science and EngineeringWuhan University of Technology122 Luoshi RoadWuhan430070P. R. China
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative DiseasesWuhan University of Technology122 Luoshi RoadWuhan430070P. R. China
| | - Manyi Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing International School of Materials Science and EngineeringWuhan University of Technology122 Luoshi RoadWuhan430070P. R. China
| | - Shuming Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing International School of Materials Science and EngineeringWuhan University of Technology122 Luoshi RoadWuhan430070P. R. China
| | - Di Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing International School of Materials Science and EngineeringWuhan University of Technology122 Luoshi RoadWuhan430070P. R. China
| | - Luolin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing International School of Materials Science and EngineeringWuhan University of Technology122 Luoshi RoadWuhan430070P. R. China
| | - Tong Lan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing International School of Materials Science and EngineeringWuhan University of Technology122 Luoshi RoadWuhan430070P. R. China
| | - Dunyi Xiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing International School of Materials Science and EngineeringWuhan University of Technology122 Luoshi RoadWuhan430070P. R. China
| | - Wei Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing International School of Materials Science and EngineeringWuhan University of Technology122 Luoshi RoadWuhan430070P. R. China
- Wuhan Institute of Photochemistry and Technology7 North Bingang RoadWuhan430083P. R. China
| | - Huiru Ma
- Wuhan Institute of Photochemistry and Technology7 North Bingang RoadWuhan430083P. R. China
- School of ChemistryChemical Engineering and Life ScienceWuhan University of Technology122 Luoshi RoadWuhan430070P. R. China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing International School of Materials Science and EngineeringWuhan University of Technology122 Luoshi RoadWuhan430070P. R. China
- School of ChemistryChemical Engineering and Life ScienceWuhan University of Technology122 Luoshi RoadWuhan430070P. R. China
| |
Collapse
|
4
|
Li W, Liu B, Ou L, Li G, Lei D, Xiong Z, Xu H, Wang J, Tang J, Li D. Arbitrary Construction of Versatile NIR-Driven Microrobots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402482. [PMID: 38940072 DOI: 10.1002/adma.202402482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Emerging light-driven micro/nanorobots (LMNRs) showcase profound potential for sophisticated manipulation and various applications. However, the realization of a versatile and straightforward fabrication technique remains a challenging pursuit. This study introduces an innovative bulk heterojunction organic semiconductor solar cell (OSC)-based spin-coating approach, aiming to facilitate the arbitrary construction of LMNRs. Leveraging the distinctive properties of a near-infrared (NIR)-responsive organic semiconductor heterojunction solution, this technique enables uniform coating across various dimensional structures (0D, 1D, 2D, 3D) to be LMNRs, denoted as "motorization." The film, with a slender profile measuring ≈140 nm in thickness, effectively preserves the original morphology of objects while imparting actuation capabilities exceeding hundreds of times their own weight. The propelled motion of these microrobots is realized through NIR-driven photoelectrochemical reaction-induced self-diffusiophoresis, showcasing a versatile array of controllable motion profiles. The strategic customization of arbitrary microrobot construction addresses specific applications, ranging from 0D microrobots inducing living crystal formation to intricate, multidimensional structures designed for tasks such as microplastic extraction, cargo delivery, and phototactic precise maneuvers. This study advances user-friendly and versatile LMNR technologies, unlocking new possibilities for various applications, signaling a transformative era in multifunctional micro/nanorobot technologies.
Collapse
Affiliation(s)
- Wanyuan Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Baiyao Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Leyan Ou
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Gangzhou Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Dapeng Lei
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Ze Xiong
- Wireless and Smart Bioelectronics Lab, School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Huihua Xu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Jizhuang Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
5
|
Cao M, Sheng R, Sun Y, Cao Y, Wang H, Zhang M, Pu Y, Gao Y, Zhang Y, Lu P, Teng G, Wang Q, Rui Y. Delivering Microrobots in the Musculoskeletal System. NANO-MICRO LETTERS 2024; 16:251. [PMID: 39037551 PMCID: PMC11263536 DOI: 10.1007/s40820-024-01464-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/16/2024] [Indexed: 07/23/2024]
Abstract
Disorders of the musculoskeletal system are the major contributors to the global burden of disease and current treatments show limited efficacy. Patients often suffer chronic pain and might eventually have to undergo end-stage surgery. Therefore, future treatments should focus on early detection and intervention of regional lesions. Microrobots have been gradually used in organisms due to their advantages of intelligent, precise and minimally invasive targeted delivery. Through the combination of control and imaging systems, microrobots with good biosafety can be delivered to the desired area for treatment. In the musculoskeletal system, microrobots are mainly utilized to transport stem cells/drugs or to remove hazardous substances from the body. Compared to traditional biomaterial and tissue engineering strategies, active motion improves the efficiency and penetration of local targeting of cells/drugs. This review discusses the frontier applications of microrobotic systems in different tissues of the musculoskeletal system. We summarize the challenges and barriers that hinder clinical translation by evaluating the characteristics of different microrobots and finally point out the future direction of microrobots in the musculoskeletal system.
Collapse
Affiliation(s)
- Mumin Cao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Renwang Sheng
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Yimin Sun
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 210009, People's Republic of China
| | - Ying Cao
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 210009, People's Republic of China
| | - Hao Wang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Ming Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Yunmeng Pu
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Yucheng Gao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Yuanwei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Panpan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Gaojun Teng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.
| | - Qianqian Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 210009, People's Republic of China.
| | - Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China.
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
6
|
Sun M, Yang S, Jiang J, Wang Q, Zhang L. Multiple Magneto-Optical Microrobotic Collectives with Selective Control in Three Dimensions Under Water. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310769. [PMID: 38263803 PMCID: PMC11497316 DOI: 10.1002/smll.202310769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/29/2023] [Indexed: 01/25/2024]
Abstract
Inspired by natural swarms, various methods are developed to create artificial magnetic microrobotic collectives. However, these magnetic collectives typically receive identical control inputs from a common external magnetic field, limiting their ability to operate independently. And they often rely on interfaces or boundaries for controlled movement, posing challenges for independent, three-dimensional(3D) navigation of multiple magnetic collectives. To address this challenge, self-assembled microrobotic collectives are proposed that can be selectively actuated in a combination of external magnetic and optical fields. By harnessing both actuation methods, the constraints of single actuation approaches are overcome. The magnetic field excites the self-assembly of colloids and maintains the self-assembled microrobotic collectives without disassembly, while the optical field drives selected microrobotic collectives to perform different tasks. The proposed magnetic-photo microrobotic collectives can achieve independent position and path control in the two-dimensional (2D) plane and 3D space. With this selective control strategy, the microrobotic collectives can cooperate in convection and mixing the dye in a confined space. The results present a systematic approach for realizing selective control of multiple microrobotic collectives, which can address multitasking requirements in complex environments.
Collapse
Affiliation(s)
- Mengmeng Sun
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong KongChina
- Physical Intelligence DepartmentMax Planck Institute for Intelligent SystemsHeisenbergstr. 370569StuttgartGermany
| | - Shihao Yang
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong KongChina
| | - Jialin Jiang
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong KongChina
| | - Qianqian Wang
- Chow Yuk Ho Technology Center for Innovative MedicineThe Chinese University of Hong KongHong KongChina
| | - Li Zhang
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong KongChina
- Multi‐Scale Medical Robotics CenterHong Kong Science ParkShatin NTHong Kong SARChina
- Department of SurgeryThe Chinese University of Hong KongHong KongChina
- CUHK T Stone Robotics InstituteThe Chinese University of Hong KongHong KongChina
- School of Mechanical EngineeringSoutheast UniversityNanjing211189China
| |
Collapse
|
7
|
Zhang S, Mou F, Yu Z, Li L, Yang M, Zhang D, Ma H, Luo W, Li T, Guan J. Heterogeneous Sensor-Carrier Microswarms for Collaborative Precise Drug Delivery toward Unknown Targets with Localized Acidosis. NANO LETTERS 2024; 24:5958-5967. [PMID: 38738749 DOI: 10.1021/acs.nanolett.4c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Micro/nanorobots hold the potential to revolutionize biomedicine by executing diverse tasks in hard-to-reach biological environments. Nevertheless, achieving precise drug delivery to unknown disease sites using swarming micro/nanorobots remains a significant challenge. Here we develop a heterogeneous swarm comprising sensing microrobots (sensor-bots) and drug-carrying microrobots (carrier-bots) with collaborative tasking capabilities for precise drug delivery toward unknown sites. Leveraging robust interspecific hydrodynamic interactions, the sensor-bots and carrier-bots spontaneously synchronize and self-organize into stable heterogeneous microswarms. Given that the sensor-bots can create real-time pH maps employing pH-responsive structural-color changes and the doxorubicin-loaded carrier-bots exhibit selective adhesion to acidic targets via pH-responsive charge reversal, the sensor-carrier microswarm, when exploring unknown environments, can detect and localize uncharted acidic targets, guide itself to cover the area, and finally deploy therapeutic carrier-bots precisely there. This versatile platform holds promise for treating diseases with localized acidosis and inspires future theranostic microsystems with expandability, task flexibility, and high efficiency.
Collapse
Affiliation(s)
- Shuming Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Zheng Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Luolin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Manyi Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Di Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Huiru Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, People's Republic of China
| | - Wei Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, People's Republic of China
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People's Republic of China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, People's Republic of China
| |
Collapse
|
8
|
Feng K, Shen W, Chen L, Gong J, Palberg T, Qu J, Niu R. Weak Ion-Exchange Based Magnetic Swarm for Targeted Drug Delivery and Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306798. [PMID: 38059804 DOI: 10.1002/smll.202306798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/06/2023] [Indexed: 12/08/2023]
Abstract
Swimming microrobots that are actuated by multiple stimuli/fields display various intriguing collective behaviors, ranging from phase separation to clustering and giant number fluctuation; however, it is still chanllenging to achieve multiple responses and functionalities within one colloidal system to emulate high environmental adaptability and improved tasking capability of natural swarms. In this work, a weak ion-exchange based swarm is presented that can self-organize and reconfigure by chemical, light, and magnetic fields, showing living crystal, amorphous glass, liquid, chain, and wheel-like structures. By changing the frequency and strength of the rotating magnetic field, various well-controlled and fast transformations are obtained. Experiments show the high adaptability and functionality of the microrobot swarm in delivering drugs in confined spaces, such as narrow channels with turns or obstacles. The drug-carrying swarm exhibits excellent chemtherapy for Hela and CT26 cells due to the pH-enhanced drug release and locomotion. This reconfigurable microswarm provides a new platform for biomedical and environmental applications.
Collapse
Affiliation(s)
- Kai Feng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wenqi Shen
- Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Ling Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiang Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Thomas Palberg
- Institut für physics, Johannes Gutenberg-Universtät Mainz, Staudingerweg 7, 55128, Mainz, Germany
| | - Jinping Qu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Ran Niu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
9
|
Wu J, Jiao N, Lin D, Li N, Ma T, Tung S, Cheng W, Wu A, Liu L. Dual-Responsive Nanorobot-Based Marsupial Robotic System for Intracranial Cross-Scale Targeting Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306876. [PMID: 37899660 DOI: 10.1002/adma.202306876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/27/2023] [Indexed: 10/31/2023]
Abstract
Nanorobots capable of active movement are an exciting technology for targeted therapeutic intervention. However, the extensive motion range and hindrance of the blood-brain barrier impeded their clinical translation in glioblastoma therapy. Here, a marsupial robotic system constructed by integrating chemical/magnetic hybrid nanorobots (child robots) with a miniature magnetic continuum robot (mother robot) for intracranial cross-scale targeting drug delivery is reported. For primary targeting on macroscale, the continuum robot enters the cranial cavity through a minimally invasive channel (e.g., Ommaya device) in the skull and transports the nanorobots to pathogenic regions. Upon circumventing the blood-brain barrier, the released nanorobots perform secondary targeting on microscale to further enhance the spatial resolution of drug delivery. In vitro experiments against primary glioblastoma cells derived from different patients are conducted for personalized treatment guidance. The operation feasibility within organisms is shown in ex vivo swine brain experiments. The biosafety of the treatment system is suggested in in vivo experiments. Owing to the hierarchical targeting method, the targeting rate, targeting accuracy, and treatment efficacy have improved greatly. The marsupial robotic system offers a novel intracranial local therapeutic strategy and constitutes a key milestone in the development of glioblastoma treatment platforms.
Collapse
Affiliation(s)
- Junfeng Wu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Niandong Jiao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Daojing Lin
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianyang Ma
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Steve Tung
- Department of Mechanical Engineering, University of Arkansas, Arkansas, 72701, USA
| | - Wen Cheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Anhua Wu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
10
|
Huang Y, Wu C, Chen J, Tang J. Colloidal Self-Assembly: From Passive to Active Systems. Angew Chem Int Ed Engl 2024; 63:e202313885. [PMID: 38059754 DOI: 10.1002/anie.202313885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/08/2023]
Abstract
Self-assembly fundamentally implies the organization of small sub-units into large structures or patterns without the intervention of specific local interactions. This process is commonly observed in nature, occurring at various scales ranging from atomic/molecular assembly to the formation of complex biological structures. Colloidal particles may serve as micrometer-scale surrogates for studying assembly, particularly for the poorly understood kinetic and dynamic processes at the atomic scale. Recent advances in colloidal self-assembly have enabled the programmable creation of novel materials with tailored properties. We here provide an overview and comparison of both passive and active colloidal self-assembly, with a discussion on the energy landscape and interactions governing both types. In the realm of passive colloidal assembly, many impressive and important structures have been realized, including colloidal molecules, one-dimensional chains, two-dimensional lattices, and three-dimensional crystals. In contrast, active colloidal self-assembly, driven by optical, electric, chemical, or other fields, involves more intricate dynamic processes, offering more flexibility and potential new applications. A comparative analysis underscores the critical distinctions between passive and active colloidal assemblies, highlighting the unique collective behaviors emerging in active systems. These behaviors encompass collective motion, motility-induced phase segregation, and exotic properties arising from out-of-equilibrium thermodynamics. Through this comparison, we aim to identify the future opportunities in active assembly research, which may suggest new application domains.
Collapse
Affiliation(s)
- Yaxin Huang
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Changjin Wu
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Jingyuan Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
11
|
Gu Z, Zhu R, Shen T, Dou L, Liu H, Liu Y, Liu X, Liu J, Zhuang S, Gu F. Autonomous nanorobots with powerful thrust under dry solid-contact conditions by photothermal shock. Nat Commun 2023; 14:7663. [PMID: 38001071 PMCID: PMC10674020 DOI: 10.1038/s41467-023-43433-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Nanorobotic motion on solid substrates is greatly hindered by strong nanofriction, and powerful nanomotors‒the core components for nanorobotic motion‒are still lacking. Optical actuation addresses power and motion control issues simultaneously, while conventional technologies with small thrust usually apply to fluid environments. Here, we demonstrate micronewton-thrust nanomotors that enable the autonomous nanorobots working like conventional robots with precise motion control on dry surfaces by a photothermal-shock technique. We build a pulsed laser-based actuation and trapping platform, termed photothermal-shock tweezers, for general motion control of metallic nanomaterials and assembled nanorobots with nanoscale precision. The thrust-to-weight ratios up to 107 enable nanomotors output forces to interact with external micro/nano-objects. Leveraging machine vision and deep learning technologies, we assemble the nanomotors into autonomous nanorobots with complex structures, and demonstrate multi-degree-of-freedom motion and sophisticated functions. Our photothermal shock-actuation concept fundamentally addresses the nanotribology challenges and expands the nanorobotic horizon from fluids to dry solid surfaces.
Collapse
Affiliation(s)
- Zhaoqi Gu
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Runlin Zhu
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Tianci Shen
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Lin Dou
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Hongjiang Liu
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Yifei Liu
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Xu Liu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 300130, Tianjin, China
| | - Jia Liu
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Songlin Zhuang
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Fuxing Gu
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 200093, Shanghai, China.
| |
Collapse
|
12
|
Urso M, Ussia M, Peng X, Oral CM, Pumera M. Reconfigurable self-assembly of photocatalytic magnetic microrobots for water purification. Nat Commun 2023; 14:6969. [PMID: 37914692 PMCID: PMC10620202 DOI: 10.1038/s41467-023-42674-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
The development of artificial small-scale robotic swarms with nature-mimicking collective behaviors represents the frontier of research in robotics. While microrobot swarming under magnetic manipulation has been extensively explored, light-induced self-organization of micro- and nanorobots is still challenging. This study demonstrates the interaction-controlled, reconfigurable, reversible, and active self-assembly of TiO2/α-Fe2O3 microrobots, consisting of peanut-shaped α-Fe2O3 (hematite) microparticles synthesized by a hydrothermal method and covered with a thin layer of TiO2 by atomic layer deposition (ALD). Due to their photocatalytic and ferromagnetic properties, microrobots autonomously move in water under light irradiation, while a magnetic field precisely controls their direction. In the presence of H2O2 fuel, concentration gradients around the illuminated microrobots result in mutual attraction by phoretic interactions, inducing their spontaneous organization into self-propelled clusters. In the dark, clusters reversibly reconfigure into microchains where microrobots are aligned due to magnetic dipole-dipole interactions. Microrobots' active motion and photocatalytic properties were investigated for water remediation from pesticides, obtaining the rapid degradation of the extensively used, persistent, and hazardous herbicide 2,4-Dichlorophenoxyacetic acid (2,4D). This study potentially impacts the realization of future intelligent adaptive metamachines and the application of light-powered self-propelled micro- and nanomotors toward the degradation of persistent organic pollutants (POPs) or micro- and nanoplastics.
Collapse
Affiliation(s)
- Mario Urso
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Brno, Czech Republic
| | - Martina Ussia
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Brno, Czech Republic
| | - Xia Peng
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Brno, Czech Republic
| | - Cagatay M Oral
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Brno, Czech Republic
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Brno, Czech Republic.
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 70800, Ostrava, Czech Republic.
- Department of Medical Research, China Medical University Hospital, China Medical University, Hsueh-Shih Road 91, 40402, Taichung, Taiwan.
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, 03722, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Liu J, Li L, Cao C, Feng Z, Liu Y, Ma H, Luo W, Guan J, Mou F. Swarming Multifunctional Heater-Thermometer Nanorobots for Precise Feedback Hyperthermia Delivery. ACS NANO 2023; 17:16731-16742. [PMID: 37651715 DOI: 10.1021/acsnano.3c03131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Micro-/nanorobots (MNRs) are envisioned to act as "motile-targeting" platforms for biomedical tasks due to their ability to propel and navigate in challenging, hard-to-reach biological environments. However, it remains a great challenge for current swarming MNRs to accurately report and regulate therapeutic doses during disease treatment. Here we present the development of swarming multifunctional heater-thermometer nanorobots (HT-NRs) and their application in precise feedback photothermal hyperthermia delivery. The HT-NRs are designed as photothermal-responsive photonic nanochains consisting of magnetic Fe3O4 nanoparticles arranged periodically in one dimension and encapsulated in a temperature-responsive hydrogel shell. The HT-NRs exhibit energetic and controllable swarming motions under a rotating magnetic field, while simultaneously functioning as motile nanoheaters and nanothermometers, utilizing their photothermal conversion and (photo)thermal-responsive structural color changes (photothermochromism). Consequently, the HT-NRs can be quickly deployed to a remote target area (e.g., a superficial tumor lesion) using their collective motion and selectively eliminate diseased cells in a specific targeted region by utilizing their self-reporting photothermochromism as visual feedback for precisely regulating external light irradiation. This work may inspire the development of intelligent multifunctional theranostic micro-/nanorobots and their practical applications in precise disease treatment.
Collapse
Affiliation(s)
- Jianfeng Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Luolin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Chuan Cao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Ziqi Feng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Yun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Huiru Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, People's Republic of China
| | - Wei Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, People's Republic of China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, People's Republic of China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
14
|
You M, Mou F, Wang K, Guan J. Tadpole-Like Flexible Microswimmers with the Head and Tail Both Magnetic. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40855-40863. [PMID: 37584677 DOI: 10.1021/acsami.3c09701] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
In analogy to eukaryotic cells that move by beating the flagella, magnetically powered micro/nanorobots with flexible filaments are capable of eluding the limitation of the scallop theorem to generate net displacement in a three-dimensional space, but they are limited by complicated fabrication and low speed. Here, we demonstrate a tadpole-like flexible microswimmer with a head and tail that are both magnetic by developing a magnetically assisted in situ polymerization method. The flexible microswimmer consists of a magnetic-bead head fixed to a nanochain bundle of magnetic nanoparticles (tail), and the tail length and stiffness can be adjusted simply by changing the duration and strength of the applied magnetic field during fabrication, respectively. For the microswimmer under an oscillating magnetic field, the magnetic head generates an undulatory motion, which can be further increased by the flexible magnetic tail. The magnetically induced undulation of the head and tail generates a traveling wave propagating through its flexible tail, resulting in efficient tadpole-like propulsion of the microswimmer. The flexible microswimmer runs at a maximum motion speed when the tail length is ∼5 times the diameter of the magnetic head, corresponding to ∼half the wavelength of the undulatory motion. The flexible microswimmers reported here are promising for active sensing and drug delivery, as the tails can be designed with various responsive hydrogels, and the results are expected to advance flexible micro/nanorobots.
Collapse
Affiliation(s)
- Ming You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, China
| | - Ke Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, China
| |
Collapse
|
15
|
Fu Y, Wu Z, Zhan S, Yang J, Gardi G, Kishore V, Malgaretti P, Wang W. Entropy by Neighbor Distance as a New Measure for Characterizing Spatiotemporal Orders in Microscopic Collective Systems. MICROMACHINES 2023; 14:1503. [PMID: 37630039 PMCID: PMC10456758 DOI: 10.3390/mi14081503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Collective systems self-organize to form globally ordered spatiotemporal patterns. Finding appropriate measures to characterize the order in these patterns will contribute to our understanding of the principles of self-organization in all collective systems. Here we examine a new measure based on the entropy of the neighbor distance distributions in the characterization of collective patterns. We study three types of systems: a simulated self-propelled boid system, two active colloidal systems, and one centimeter-scale robotic swarm system. In all these systems, the new measure proves sensitive in revealing active phase transitions and in distinguishing steady states. We envision that the entropy by neighbor distance could be useful for characterizing biological swarms such as bird flocks and for designing robotic swarms.
Collapse
Affiliation(s)
- Yulei Fu
- University of Michigan—Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zongyuan Wu
- University of Michigan—Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
| | - Sirui Zhan
- University of Michigan—Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiacheng Yang
- The Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Gaurav Gardi
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Department of Physics, University of Stuttgart, 70569 Stuttgart, Germany
| | - Vimal Kishore
- Department of Physics, Banaras Hindu University, Varanasi 221005, India
| | - Paolo Malgaretti
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Wendong Wang
- University of Michigan—Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Li L, Yu Z, Liu J, Yang M, Shi G, Feng Z, Luo W, Ma H, Guan J, Mou F. Swarming Responsive Photonic Nanorobots for Motile-Targeting Microenvironmental Mapping and Mapping-Guided Photothermal Treatment. NANO-MICRO LETTERS 2023; 15:141. [PMID: 37247162 PMCID: PMC10226971 DOI: 10.1007/s40820-023-01095-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/03/2023] [Indexed: 05/30/2023]
Abstract
Micro/nanorobots can propel and navigate in many hard-to-reach biological environments, and thus may bring revolutionary changes to biomedical research and applications. However, current MNRs lack the capability to collectively perceive and report physicochemical changes in unknown microenvironments. Here we propose to develop swarming responsive photonic nanorobots that can map local physicochemical conditions on the fly and further guide localized photothermal treatment. The RPNRs consist of a photonic nanochain of periodically-assembled magnetic Fe3O4 nanoparticles encapsulated in a responsive hydrogel shell, and show multiple integrated functions, including energetic magnetically-driven swarming motions, bright stimuli-responsive structural colors, and photothermal conversion. Thus, they can actively navigate in complex environments utilizing their controllable swarming motions, then visualize unknown targets (e.g., tumor lesion) by collectively mapping out local abnormal physicochemical conditions (e.g., pH, temperature, or glucose concentration) via their responsive structural colors, and further guide external light irradiation to initiate localized photothermal treatment. This work facilitates the development of intelligent motile nanosensors and versatile multifunctional nanotheranostics for cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Luolin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Zheng Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Jianfeng Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Manyi Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Gongpu Shi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Ziqi Feng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Wei Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| | - Huiru Ma
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
17
|
Yu L, Yang M, Guan J, Mou F. Ultrasmall Fe 2O 3 Tubular Nanomotors: The First Example of Swarming Photocatalytic Nanomotors Operating in High-Electrolyte Media. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1370. [PMID: 37110955 PMCID: PMC10143400 DOI: 10.3390/nano13081370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Self-propelled chemical micro/nanomotors (MNMs) have demonstrated considerable potential in targeted drug delivery, (bio)sensing, and environmental remediation due to their autonomous nature and possible intelligent self-targeting behaviors (e.g., chemotaxis and phototaxis). However, these MNMs are commonly limited by their primary propulsion mechanisms of self-electrophoresis and electrolyte self-diffusiophoresis, making them prone to quenching in high electrolyte environments. Thus, the swarming behaviors of chemical MNMs in high-electrolyte media remain underexplored, despite their potential to enable the execution of complex tasks in high-electrolyte biological media or natural waters. In this study, we develop ultrasmall tubular nanomotors that exhibit ion-tolerant propulsions and collective behaviors. Upon vertical upward UV irradiation, the ultrasmall Fe2O3 tubular nanomotors (Fe2O3 TNMs) demonstrate positive superdiffusive photogravitaxis and can further self-organize into nanoclusters near the substrate in a reversible manner. After self-organization, the Fe2O3 TNMs exhibit a pronounced emergent behavior, allowing them to switch from random superdiffusions to ballistic motions near the substrate. Even at a high electrolyte concentration (Ce), the ultrasmall Fe2O3 TNMs retain a relatively thick electrical double layer (EDL) compared to their size, and the electroosmotic slip flow in their EDL is strong enough to propel them and induce phoretic interactions among them. As a result, the nanomotors can rapidly concentrate near the substrate and then gather into motile nanoclusters in high-electrolyte environments. This work opens a gate for designing swarming ion-tolerant chemical nanomotors and may expedite their applications in biomedicine and environmental remediation.
Collapse
|
18
|
Zhang D, Liu S, Guan J, Mou F. "Motile-targeting" drug delivery platforms based on micro/nanorobots for tumor therapy. Front Bioeng Biotechnol 2022; 10:1002171. [PMID: 36185435 PMCID: PMC9523273 DOI: 10.3389/fbioe.2022.1002171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional drug delivery systems opened the gate for tumor-targeted therapy, but they generally took advantage of enhanced permeability and retention or ligand-receptor mediated interaction, and thus suffered from limited recognition range (<0.5 nm) and low targeting efficiency (0.7%, median). Alternatively, micro/nanorobots (MNRs) may act as emerging "motile-targeting" drug delivery platforms to deliver therapeutic payloads, thereby making a giant step toward effective and safe cancer treatment due to their autonomous movement and navigation in biological media. This review focuses on the most recent developments of MNRs in "motile-targeting" drug delivery. After a brief introduction to traditional tumor-targeted drug delivery strategies and various MNRs, the representative applications of MNRs in "motile-targeting" drug delivery are systematically streamlined in terms of the propelling mechanisms. Following a discussion of the current challenges of each type of MNR in biomedical applications, as well as future prospects, several promising designs for MNRs that could benefit in "motile-targeting" drug delivery are proposed. This work is expected to attract and motivate researchers from different communities to advance the creation and practical application of the "motile-targeting" drug delivery platforms.
Collapse
Affiliation(s)
| | | | | | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
19
|
Wu R, Zhu Y, Cai X, Wu S, Xu L, Yu T. Recent Process in Microrobots: From Propulsion to Swarming for Biomedical Applications. MICROMACHINES 2022; 13:1473. [PMID: 36144096 PMCID: PMC9503943 DOI: 10.3390/mi13091473] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Recently, robots have assisted and contributed to the biomedical field. Scaling down the size of robots to micro/nanoscale can increase the accuracy of targeted medications and decrease the danger of invasive operations in human surgery. Inspired by the motion pattern and collective behaviors of the tiny biological motors in nature, various kinds of sophisticated and programmable microrobots are fabricated with the ability for cargo delivery, bio-imaging, precise operation, etc. In this review, four types of propulsion-magnetically, acoustically, chemically/optically and hybrid driven-and their corresponding features have been outlined and categorized. In particular, the locomotion of these micro/nanorobots, as well as the requirement of biocompatibility, transportation efficiency, and controllable motion for applications in the complex human body environment should be considered. We discuss applications of different propulsion mechanisms in the biomedical field, list their individual benefits, and suggest their potential growth paths.
Collapse
|