1
|
Gralewska P, Gajek A, Marczak A, Rogalska A. Targeted Nanocarrier-Based Drug Delivery Strategies for Improving the Therapeutic Efficacy of PARP Inhibitors against Ovarian Cancer. Int J Mol Sci 2024; 25:8304. [PMID: 39125873 PMCID: PMC11312858 DOI: 10.3390/ijms25158304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
The current focus of ovarian cancer (OC) research is the improvement of treatment options through maximising drug effectiveness. OC remains the fifth leading cause of cancer-induced mortality in women worldwide. In recent years, nanotechnology has revolutionised drug delivery systems. Nanoparticles may be utilised as carriers in gene therapy or to overcome the problem of drug resistance in tumours by limiting the number of free drugs in circulation and thereby minimising undesired adverse effects. Cell surface receptors, such as human epidermal growth factor 2 (HER2), folic acid (FA) receptors, CD44 (also referred to as homing cell adhesion molecule, HCAM), and vascular endothelial growth factor (VEGF) are highly expressed in ovarian cancer cells. Generation of active targeting nanoparticles involves modification with ligands that recognise cell surface receptors and thereby promote internalisation by cancer cells. Several poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are currently used for the treatment of high-grade serous ovarian carcinomas (HGSOC) or platinum-sensitive relapsed OC. However, PARP resistance and poor drug bioavailability are common challenges, highlighting the urgent need to develop novel, effective strategies for ovarian cancer treatment. This review evaluates the utility of nanoparticles in ovarian cancer therapy, with a specific focus on targeted approaches and the use of PARPi nanocarriers to optimise treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90–236 Lodz, Poland; (P.G.); (A.G.); (A.M.)
| |
Collapse
|
2
|
Yin X, He Z, Chen K, Ouyang K, Yang C, Li J, Tang H, Cai M. Unveiling the impact of CDK8 on tumor progression: mechanisms and therapeutic strategies. Front Pharmacol 2024; 15:1386929. [PMID: 38606172 PMCID: PMC11006979 DOI: 10.3389/fphar.2024.1386929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024] Open
Abstract
CDK8 is an important member of the cyclin-dependent kinase family associated with transcription and acts as a key "molecular switch" in the Mediator complex. CDK8 regulates gene expression by phosphorylating transcription factors and can control the transcription process through Mediator complex. Previous studies confirmed that CDK8 is an important oncogenic factor, making it a potential tumor biomarker and a promising target for tumor therapy. However, CDK8 has also been confirmed to be a tumor suppressor, indicating that it not only promotes the development of tumors but may also be involved in tumor suppression. Therefore, the dual role of CDK8 in the process of tumor development is worth further exploration and summary. This comprehensive review delves into the intricate involvement of CDK8 in transcription-related processes, as well as its role in signaling pathways related to tumorigenesis, with a focus on its critical part in driving cancer progression.
Collapse
Affiliation(s)
- Xiaomin Yin
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhilong He
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Kun Chen
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Kai Ouyang
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Changxuan Yang
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianjun Li
- Department of Urological Surgical, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Manbo Cai
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Leong M, Parker CJ, Shaw ZL, Huang LZY, Nisbet DR, Daeneke T, Elbourne A, Cheeseman S. Metallic Gallium Droplets Exhibit Poor Antibacterial Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:332-341. [PMID: 38111109 DOI: 10.1021/acsami.3c15497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The rise of antibiotic resistance in pathogenic bacteria requires new therapeutics to be developed. Several metallic nanoparticles such as those made from silver, copper, and zinc have shown significant antibacterial activity, in part due to metal ion leaching. Ga3+ containing compounds have also been shown to have antibacterial properties. Accordingly, it is estimated that metallic Ga droplets may be antibacterial, and some studies to date have confirmed this. Here, multiple concentrations of Ga droplets were tested against the antibiotic resistant Gram-positive bacteria methicillin-resistantStaphylococcus aureus (MRSA) and the Gram-negative bacteria Pseudomonas aeruginosa (P. aeruginosa) Despite a high concentration (2 mg/mL), Ga droplets had only modest antibacterial activity against both bacteria after 24 h of interaction. Finally, we demonstrated that Ga droplets were easily functionalized through a galvanic replacement reaction to develop antibacterial particles with copper and silver demonstrating a total detectable reduction of MRSA and >96% reduction ofP. aeruginosa. Altogether, these results contradict previous literature and show that Ga droplets demonstrate no antibacterial activity at concentrations comparable to those of conventional antibiotics and well-established antibacterial nanomaterials and only modest antibacterial activity at very high concentrations. However, we demonstrate that their antibacterial activity can be easily enhanced by functionalization.
Collapse
Affiliation(s)
- Michelle Leong
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Caiden J Parker
- School of Engineering, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Z L Shaw
- School of Engineering, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Louisa Z Y Huang
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - David R Nisbet
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Carlton, Victoria 3053, Australia
- Graeme Clark Institute, Faculty of Engineering and Information Technology & Faculty of Medicine, Dentistry and Health Services, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Torben Daeneke
- School of Engineering, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Aaron Elbourne
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Samuel Cheeseman
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Carlton, Victoria 3053, Australia
- Graeme Clark Institute, Faculty of Engineering and Information Technology & Faculty of Medicine, Dentistry and Health Services, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
4
|
Zhang Y, Li H, Wei Y, Li L. Alantolactone Induced Apoptosis and DNA Damage of Cervical Cancer through ATM/CHK2 Signaling Pathway. Biol Pharm Bull 2024; 47:1255-1264. [PMID: 38972750 DOI: 10.1248/bpb.b23-00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Traditional Chinese Medicine, known for its minimal side effects and significant clinical efficacy, has attracted considerable interest for its potential in cancer therapy. In particular, Inula helenium L. has demonstrated effectiveness in inhibiting a variety of cancers. This study focuses on alantolactone (ALT), a prominent compound from Inula helenium L., recognized for its anti-cancer capabilities across multiple cancer types. The primary objective of this study is to examine the influence of ALT on the proliferation, apoptosis, cell cycle, and tumor growth of cervical cancer (CC) cells, along with its associated signaling pathways. To determine protein expression alterations, Western blot analysis was conducted. Furthermore, an in vivo model was created by subcutaneously injecting HeLa cells into nude mice to assess the impact of ALT on cervical cancer. Our research thoroughly investigates the anti-tumor potential of ALT in the context of CC. ALT was found to inhibit cell proliferation and induce apoptosis in SiHa and HeLa cell lines, particularly targeting ataxia-telangiectasia mutated (ATM) proteins associated with DNA damage. The suppression of DNA damage and apoptosis induction when ATM was inhibited underscores the crucial role of the ATM/cell cycle checkpoint kinase 2 (CHK2) axis in ALT's anti-tumor effects. In vivo studies with a xenograft mouse model further validated ALT's effectiveness in reducing CC tumor growth and promoting apoptosis. This study offers new insights into how ALT combats CC, highlighting its promise as an effective anti-cervical cancer agent and providing hope for improved treatment outcomes for CC patients.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gynecology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine
| | - Heyue Li
- Department of Gynecology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine
| | - Yunfang Wei
- Department of Gynecology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine
| | - Linxia Li
- Department of Gynecology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine
| |
Collapse
|
5
|
Zhou Z, Wang Y, Shao Z, Zhang G, Jiang H, Tang Y, Huang Z, Zhu Y, Li J. A multiparametric fluorescent visualization approach for detecting drug resistance in living cancer cells. Talanta 2023; 259:124564. [PMID: 37080074 DOI: 10.1016/j.talanta.2023.124564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/22/2023]
Abstract
Drug resistance is a worldwide health care crisis which impedes disease treatment and increases financial burden, especially for its multifactorial nature and high complexity. Herein, we developed a multiparametric approach to visualize and detect drug resistance in living cancer cells, through the combination of DNA-templated covalent protein labeling strategy and fluorescent resonance energy transfer technique. Gefitinib resistance in non-small cell lung cancer caused by mesenchymal-epidermal transition factor (Met) overexpression and hyperactivation was investigated as a proof-of-concept. Unlike the traditional single-factor investigation, the proposed approach evaluated the contribution of three important parameters towards the resistance, including the changes of Met expression level, the homodimerization of Met with itself and the heterodimerization of Met with epidermal growth factor receptor (EGFR). A multiple regression model based on these three parameters was tentatively established for evaluation of the resistance level of laboratory-developed resistant cells and evaluation of the resistance level of patient-derived cells. Such an approach facilitates a quick identification of a drug resistance, to evaluate not only the resistance level but also the resistance mechanism.
Collapse
Affiliation(s)
- Zhilan Zhou
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Ya Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Zhengtao Shao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Guixi Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Hang Jiang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Yiyuan Tang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Zening Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Yingdi Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Juan Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|