1
|
Wei Y, Deng Z, Yin T. Are we closer to robust predictors of recurrent pregnancy loss by means of integrating different types of omics data? Expert Rev Mol Diagn 2024; 24:561-563. [PMID: 38973412 DOI: 10.1080/14737159.2024.2375235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Affiliation(s)
- Yiqiu Wei
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhimin Deng
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Zhang T, Xie L, Guo Y, Wang Z, Guo X, Liu R, Jin Q, Chang M, Wang X. 4,4-Dimethylsterols Reduces Fat Accumulation via Inhibiting Fatty Acid Amide Hydrolase In Vitro and In Vivo. RESEARCH (WASHINGTON, D.C.) 2024; 7:0377. [PMID: 38812531 PMCID: PMC11134202 DOI: 10.34133/research.0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/14/2024] [Indexed: 05/31/2024]
Abstract
4,4-Dimethylsterols constitute a unique class of phytosterols responsible for regulating endogenous cannabinoid system (ECS) functions. However, precise mechanism through which 4,4-dimethylsterols affect fat metabolism and the linkage to the ECS remain unresolved. In this study, we identified that 4,4-dimethylsterols, distinct from 4-demethseterols, act as inhibitors of fatty acid amide hydrolases (FAAHs) both in vivo and in vitro. Genetic ablation of FAAHs (faah-1) abolishes the effects of 4,4-dimethylsterols on fat accumulation and locomotion behavior in a Caenorhabditis elegans model. We confirmed that dietary intervention with 4,4-dimethylsterols in a high-fat diet (HFD) mouse model leads to a significant reduction in body weight (>11.28%) with improved lipid profiles in the liver and adipose tissues and increased fecal triacylglycerol excretion. Untargeted and targeted metabolomics further verified that 4,4-dimethylsterols influence unsaturated fatty acid biosynthesis and elevate oleoyl ethanolamine levels in the intestine. We propose a potential molecular mechanism in which 4,4-dimethylsterols engage in binding interactions with the catalytic pocket (Ser241) of FAAH-1 protein due to the shielded polarity, arising from the presence of 2 additional methyl groups (CH3). Consequently, 4,4-dimethylsterols represent an unexplored class of beneficial phytosterols that coordinate with FAAH-1 activity to reduce fat accumulation, which offers new insight into intervention strategies for treating diet-induced obesity.
Collapse
Affiliation(s)
- Tao Zhang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology,
Jiangnan University, Wuxi 214122, China
- College of Food Science and Technology,
Huazhong Agricultural University, Wuhan 430070, China
| | - Liangliang Xie
- School of Biological and Food Engineering,
Anhui Polytechnic University, Wuhu 241000, China
| | - Yiwen Guo
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology,
Jiangnan University, Wuxi 214122, China
| | - Zhangtie Wang
- College of Biosystems Engineering and Food Science,
Zhejiang University, Hangzhou 310058, China
| | - Xin Guo
- Department of Food Science,
University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ruijie Liu
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology,
Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology,
Jiangnan University, Wuxi 214122, China
| | - Ming Chang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology,
Jiangnan University, Wuxi 214122, China
| | - Xingguo Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology,
Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Zhang J, Ouyang F, Gao A, Zeng T, Li M, Li H, Zhou W, Gao Q, Tang X, Zhang Q, Ran X, Tian G, Quan X, Tang Z, Zou J, Zeng Y, Long Y, Li Y. ESM1 enhances fatty acid synthesis and vascular mimicry in ovarian cancer by utilizing the PKM2-dependent warburg effect within the hypoxic tumor microenvironment. Mol Cancer 2024; 23:94. [PMID: 38720298 PMCID: PMC11077861 DOI: 10.1186/s12943-024-02009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND The hypoxic tumor microenvironment is a key factor that promotes metabolic reprogramming and vascular mimicry (VM) in ovarian cancer (OC) patients. ESM1, a secreted protein, plays an important role in promoting proliferation and angiogenesis in OC. However, the role of ESM1 in metabolic reprogramming and VM in the hypoxic microenvironment in OC patients has not been determined. METHODS Liquid chromatography coupled with tandem MS was used to analyze CAOV3 and OV90 cells. Interactions between ESM1, PKM2, UBA2, and SUMO1 were detected by GST pull-down, Co-IP, and molecular docking. The effects of the ESM1-PKM2 axis on cell glucose metabolism were analyzed based on an ECAR experiment. The biological effects of the signaling axis on OC cells were detected by tubule formation, transwell assay, RT‒PCR, Western blot, immunofluorescence, and in vivo xenograft tumor experiments. RESULTS Our findings demonstrated that hypoxia induces the upregulation of ESM1 expression through the transcription of HIF-1α. ESM1 serves as a crucial mediator of the interaction between PKM2 and UBA2, facilitating the SUMOylation of PKM2 and the subsequent formation of PKM2 dimers. This process promotes the Warburg effect and facilitates the nuclear translocation of PKM2, ultimately leading to the phosphorylation of STAT3. These molecular events contribute to the promotion of ovarian cancer glycolysis and vasculogenic mimicry. Furthermore, our study revealed that Shikonin effectively inhibits the molecular interaction between ESM1 and PKM2, consequently preventing the formation of PKM2 dimers and thereby inhibiting ovarian cancer glycolysis, fatty acid synthesis and vasculogenic mimicry. CONCLUSION Our findings demonstrated that hypoxia increases ESM1 expression through the transcriptional regulation of HIF-1α to induce dimerization via PKM2 SUMOylation, which promotes the OC Warburg effect and VM.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Fan Ouyang
- Department of Cardiology, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Anbo Gao
- Department of Cardiology, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
- Clinical Research Institute, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tian Zeng
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ming Li
- Trauma Center, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Wenchao Zhou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qing Gao
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xing Tang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Qunfeng Zhang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaomin Ran
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Gang Tian
- Department of Rehabilitation, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Xiyun Quan
- Department of Pathology, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Zhenzi Tang
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Juan Zou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yifei Zeng
- Department of Oncology, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, China.
| | - Yunzhu Long
- Department of Infectious Disease, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| |
Collapse
|
4
|
Yang HM, Kim J, Kim BK, Seo HJ, Kim JY, Lee JE, Lee J, You J, Jin S, Kwon YW, Jang HD, Kim HS. Resistin Regulates Inflammation and Insulin Resistance in Humans via the Endocannabinoid System. RESEARCH (WASHINGTON, D.C.) 2024; 7:0326. [PMID: 39050819 PMCID: PMC11267475 DOI: 10.34133/research.0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/01/2024] [Indexed: 07/27/2024]
Abstract
Resistin plays an important role in the pathophysiology of obesity-mediated insulin resistance in mice. However, the biology of resistin in humans is quite different from that in rodents. Therefore, the association between resistin and insulin resistance remains unclear in humans. Here, we tested whether and how the endocannabinoid system (ECS) control circulating peripheral blood mononuclear cells (PBMCs) that produce resistin and infiltrate into the adipose tissue, heart, skeletal muscle, and liver, resulting in inflammation and insulin resistance. Using human PBMCs, we investigate whether the ECS is connected to human resistin. To test whether the ECS regulates inflammation and insulin resistance in vivo, we used 2 animal models such as "humanized" nonobese diabetic/Shi-severe combined immunodeficient interleukin-2Rγ (null) (NOG) mice and "humanized" resistin mouse models, which mimic human body. In human atheromatous plaques, cannabinoid 1 receptor (CB1R)-positive macrophage was colocalized with the resistin expression. In addition, resistin was exclusively expressed in the sorted CB1R-positive cells from human PBMCs. In CB1R-positive cells, endocannabinoid ligands induced resistin expression via the p38-Sp1 pathway. In both mouse models, a high-fat diet increased the accumulation of endocannabinoid ligands in adipose tissue, which recruited the CB1R-positive cells that secrete resistin, leading to adipose tissue inflammation and insulin resistance. This phenomenon was suppressed by CB1R blockade or in resistin knockout mice. Interestingly, this process was accompanied by mitochondrial change that was induced by resistin treatment. These results provide important insights into the ECS-resistin axis, leading to the development of metabolic diseases. Therefore, the regulation of resistin via the CB1R could be a potential therapeutic strategy for cardiometabolic diseases.
Collapse
Affiliation(s)
- Han-Mo Yang
- Department of Internal Medicine,
Seoul National University Hospital, Seoul, Korea
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Joonoh Kim
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Baek-Kyung Kim
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Hyun Ju Seo
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Ju-Young Kim
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Joo-Eun Lee
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Jaewon Lee
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Jihye You
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Sooryeonhwa Jin
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Yoo-Wook Kwon
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Hyun-Duk Jang
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
| | - Hyo-Soo Kim
- Department of Internal Medicine,
Seoul National University Hospital, Seoul, Korea
- National Research Laboratory for Stem Cell Niche,
Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy,
Seoul National University Hospital, Seoul, Korea
- Molecular Medicine and Biopharmaceutical Sciences,
Seoul National University, Seoul, 03080, Korea
| |
Collapse
|
5
|
Shi J, Lv Q, Miao D, Xiong Z, Wei Z, Wu S, Tan D, Wang K, Zhang X. HIF2α Promotes Cancer Metastasis through TCF7L2-Dependent Fatty Acid Synthesis in ccRCC. RESEARCH (WASHINGTON, D.C.) 2024; 7:0322. [PMID: 38390305 PMCID: PMC10882601 DOI: 10.34133/research.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/27/2024] [Indexed: 02/24/2024]
Abstract
Recent studies have highlighted the notable involvement of the crosstalk between hypoxia-inducible factor 2 alpha (HIF2α) and Wnt signaling components in tumorigenesis. However, the cellular function and precise regulatory mechanisms of HIF2α and Wnt signaling interactions in clear cell renal cell carcinoma (ccRCC) remain elusive. To analyze the correlation between HIF2α and Wnt signaling, we utilized the Cancer Genome Atlas - Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) public database, HIF2α RNA sequencing data, and conducted luciferase reporter assays. A Wnt-related gene set was employed to identify key regulators of Wnt signaling controlled by HIF2α in ccRCC. Furthermore, we assessed the biological effects of TCF7L2 on ccRCC metastasis and lipid metabolism in both in vivo and in vitro settings. Our outcomes confirm TCF7L2 as a key gene involved in HIF2α-mediated regulation of the canonical Wnt pathway. Functional studies demonstrate that TCF7L2 promotes metastasis in ccRCC. Mechanistic investigations reveal that HIF2α stabilizes TCF7L2 mRNA in a method based on m6A by transcriptionally regulating METTL3. Up-regulation of TCF7L2 enhances cellular fatty acid oxidation, which promotes histone acetylation. This facilitates the transcription of genes connected to epithelial-mesenchymal transition and ultimately enhances metastasis of ccRCC. These outcomes offer a novel understanding into the involvement of lipid metabolism in the signaling pathway regulation, offering valuable implications for targeted treatment in ccRCC.
Collapse
Affiliation(s)
- Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
| | - Qingyang Lv
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
| | - Daojia Miao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
| | - Zhiyong Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
| | - Zhihao Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
| | - Songming Wu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
| | - Diaoyi Tan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
| | - Keshan Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, P. R. China
| |
Collapse
|
6
|
Guo Z, Bergeron KF, Lingrand M, Mounier C. Unveiling the MUFA-Cancer Connection: Insights from Endogenous and Exogenous Perspectives. Int J Mol Sci 2023; 24:9921. [PMID: 37373069 DOI: 10.3390/ijms24129921] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Monounsaturated fatty acids (MUFAs) have been the subject of extensive research in the field of cancer due to their potential role in its prevention and treatment. MUFAs can be consumed through the diet or endogenously biosynthesized. Stearoyl-CoA desaturases (SCDs) are key enzymes involved in the endogenous synthesis of MUFAs, and their expression and activity have been found to be increased in various types of cancer. In addition, diets rich in MUFAs have been associated with cancer risk in epidemiological studies for certain types of carcinomas. This review provides an overview of the state-of-the-art literature on the associations between MUFA metabolism and cancer development and progression from human, animal, and cellular studies. We discuss the impact of MUFAs on cancer development, including their effects on cancer cell growth, migration, survival, and cell signaling pathways, to provide new insights on the role of MUFAs in cancer biology.
Collapse
Affiliation(s)
- Zhiqiang Guo
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H3P 3P8, Canada
| | - Karl-Frédérik Bergeron
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H3P 3P8, Canada
| | - Marine Lingrand
- Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Catherine Mounier
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H3P 3P8, Canada
| |
Collapse
|