1
|
Huang W, Dong H, Yan Q, Deng T, Li X, Zhao Z, Li Z, Wang M, Zhang C, Kong B, Shi J, Yuan D. Disulfide-Rich Self-Assembling Peptides Based on Aromatic Amino Acid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407464. [PMID: 39491516 DOI: 10.1002/smll.202407464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Aromatic residues in assembling peptides play a crucial role in driving peptide self-assembly through π-π stacking and hydrophobic interactions. Although various aromatic capping groups have been extensively studied, systematic investigations into the effects of single aromatic amino acids in assembling peptides remain limited. In this study, the influence of aromatic-aromatic interactions on disulfide-rich assembling peptides is systematically investigated by incorporating three different aromatic amino acids. Their folding propensity, self-assembling properties, and rheological behaviors are evaluated. These results indicate that different aromatic-aromatic interactions have a significant effect on self-assembly abilities, as determined by critical aggregation concentration (CAC) measurements. Furthermore, the biocompatibility of these hydrogels is assessed, and their potential for 3D cell culture is explored. The injectable F1-ox hydrogel demonstrate excellent biocompatibility for SHED and NIH3T3 cells and exhibit a porous structure that facilitates nutrient and cellular metabolic waste exchange. This work provides new insights into the molecular design of peptide-based biomaterials, with a focus on the impact of aromatic residues on disulfide-rich assembling peptides.
Collapse
Affiliation(s)
- Wenjing Huang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Huilei Dong
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Qipeng Yan
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Tingfen Deng
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Xiaoxu Li
- China Tobacco Hunan Industrial CO., Ltd., Changsha, Hunan, 410019, P. R. China
- Beijing Life Science Academy, Beijing, 102209, P. R. China
| | - Zhe Zhao
- Technology Center, China Tobacco Shandong Industrial Co., Ltd., Jinan, 250014, P. R. China
| | - Zenghui Li
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Mingshui Wang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Chunhui Zhang
- College of Biology, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Bo Kong
- China Tobacco Hunan Industrial CO., Ltd., Changsha, Hunan, 410019, P. R. China
| | - Junfeng Shi
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Dan Yuan
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
2
|
Yao X, Cao X, He J, Hao L, Chen H, Li X, Huang W. Controlled Fabrication of Unimolecular Micelles as Versatile Nanoplatform for Multifunctional Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405816. [PMID: 39246207 DOI: 10.1002/smll.202405816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Unimolecular micelles (UMs) are nano-sized structures that are composed of single molecules with precise composition. Compared to self-assembled polymeric micelles, UMs possess ultra-stable property even in complex biological environment. With the development of controllable polymerization and coupling chemistry, the preparation of narrowly monodispersed UMs with precise morphology and size has been realized, which further facilitates their multifunctional applications. After brief introduction, state-of-the-art advances in the synthesis and applications of UMs are discussed with an emphasis on their bioapplications. It is believed that these UMs have great potential in future fabrication of multifunctional nanoplatforms.
Collapse
Affiliation(s)
- Xikuang Yao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xudong Cao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Jiayu He
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Linhui Hao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Haobo Chen
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xin Li
- School of Pharmaceutical Science, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Wei Huang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| |
Collapse
|
3
|
Hu L, Zhou S, Zhang X, Shi C, Zhang Y, Chen X. Self-Assembly of Polymers and Their Applications in the Fields of Biomedicine and Materials. Polymers (Basel) 2024; 16:2097. [PMID: 39125124 PMCID: PMC11314328 DOI: 10.3390/polym16152097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Polymer self-assembly can prepare various shapes and sizes of pores, making it widely used. The complexity and diversity of biomolecules make them a unique class of building blocks for precise assembly. They are particularly suitable for the new generation of biomaterials integrated with life systems as they possess inherent characteristics such as accurate identification, self-organization, and adaptability. Therefore, many excellent methods developed have led to various practical results. At the same time, the development of advanced science and technology has also expanded the application scope of self-assembly of synthetic polymers. By utilizing this technology, materials with unique shapes and properties can be prepared and applied in the field of tissue engineering. Nanomaterials with transparent and conductive properties can be prepared and applied in fields such as electronic displays and smart glass. Multi-dimensional, controllable, and multi-level self-assembly between nanostructures has been achieved through quantitative control of polymer dosage and combination, chemical modification, and composite methods. Here, we list the classic applications of natural- and artificially synthesized polymer self-assembly in the fields of biomedicine and materials, introduce the cutting-edge technologies involved in these applications, and discuss in-depth the advantages, disadvantages, and future development directions of each type of polymer self-assembly.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoyi Chen
- School of Pharmacy, Jiamusi University, Jiamusi 154007, China; (L.H.); (S.Z.); (X.Z.); (C.S.); (Y.Z.)
| |
Collapse
|
4
|
Havlicek D, Panakkal VM, Voska L, Sedlacek O, Jirak D. Self-Assembled Fluorinated Nanoparticles as Sensitive and Biocompatible Theranostic Platforms for 19F MRI. Macromol Biosci 2024; 24:e2300510. [PMID: 38217510 DOI: 10.1002/mabi.202300510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/20/2023] [Indexed: 01/15/2024]
Abstract
Theranostics is a novel paradigm integrating therapy and diagnostics, thereby providing new prospects for overcoming the limitations of traditional treatments. In this context, perfluorocarbons (PFCs) are the most widely used tracers in preclinical fluorine-19 magnetic resonance (19F MR), primarily for their high fluorine content. However, PFCs are extremely hydrophobic, and their solutions often display reduced biocompatibility, relative instability, and subpar 19F MR relaxation times. This study aims to explore the potential of micellar 19F MR imaging (MRI) tracers, synthesized by polymerization-induced self-assembly (PISA), as alternative theranostic agents for simultaneous imaging and release of the non-steroidal antileprotic drug clofazimine. In vitro, under physiological conditions, these micelles demonstrate sustained drug release. In vivo, throughout the drug release process, they provide a highly specific and sensitive 19F MRI signal. Even after extended exposure, these fluoropolymer tracers show biocompatibility, as confirmed by the histological analysis. Moreover, the characteristics of these polymers can be broadly adjusted by design to meet the wide range of criteria for preclinical and clinical settings. Therefore, micellar 19F MRI tracers display physicochemical properties suitable for in vivo imaging, such as relaxation times and non-toxicity, and high performance as drug carriers, highlighting their potential as both diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Dominik Havlicek
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague, 140 20, Czech Republic
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Kateřinská 1660/32, Prague, 121 08, Czech Republic
| | - Vyshakh M Panakkal
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague, 128 00, Czech Republic
| | - Ludek Voska
- Department of Clinical and Transplant Pathology, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague, 140 20, Czech Republic
| | - Ondrej Sedlacek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague, 128 00, Czech Republic
| | - Daniel Jirak
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague, 140 20, Czech Republic
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Kateřinská 1660/32, Prague, 121 08, Czech Republic
- Faculty of Health Studies, Technical University of Liberec, 1402/2 Studentská, Liberec, 46117, Czech Republic
| |
Collapse
|
5
|
Serkhacheva NS, Prokopov NI, Lysenko EA, Kozhunova EY, Chernikova EV. Modern Trends in Polymerization-Induced Self-Assembly. Polymers (Basel) 2024; 16:1408. [PMID: 38794601 PMCID: PMC11125046 DOI: 10.3390/polym16101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Polymerization-induced self-assembly (PISA) is a powerful and versatile technique for producing colloidal dispersions of block copolymer particles with desired morphologies. Currently, PISA can be carried out in various media, over a wide range of temperatures, and using different mechanisms. This method enables the production of biodegradable objects and particles with various functionalities and stimuli sensitivity. Consequently, PISA offers a broad spectrum of potential commercial applications. The aim of this review is to provide an overview of the current state of rational synthesis of block copolymer particles with diverse morphologies using various PISA techniques and mechanisms. The discussion begins with an examination of the main thermodynamic, kinetic, and structural aspects of block copolymer micellization, followed by an exploration of the key principles of PISA in the formation of gradient and block copolymers. The review also delves into the main mechanisms of PISA implementation and the principles governing particle morphology. Finally, the potential future developments in PISA are considered.
Collapse
Affiliation(s)
- Natalia S. Serkhacheva
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia;
| | - Nickolay I. Prokopov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia;
| | - Evgenii A. Lysenko
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
| | - Elena Yu. Kozhunova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, bld. 2, 119991 Moscow, Russia
| | - Elena V. Chernikova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
| |
Collapse
|
6
|
Yao X, Sun C, Xiong F, Zhang W, Yao W, Xu Y, Fan W, Huo F. Polysarcosine as PEG Alternative for Enhanced Camptothecin-Induced Cancer Immunogenic Cell Death. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19472-19479. [PMID: 38572784 DOI: 10.1021/acsami.4c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Nanomedicine-enhanced immunogenic cell death (ICD) has attracted considerable attention for its great potential in cancer treatment. Even though polyethylene glycol (PEG) is widely recognized as the gold standard for surface modification of nanomedicines, some shortcomings associated with this PEGylation, such as hindered cell endocytosis and accelerated blood clearance phenomenon, have been revealed in recent years. Notably, polysarcosine (PSar) as a highly biocompatible polymer can be finely synthesized by mild ring-opening polymerization (ROP) of sarcosine N-carboxyanhydrides (Sar-NCAs) and exhibit great potential as an alternative to PEG. In this article, PSar-b-polycamptothecin block copolymers are synthesized by sequential ROP of camptothecin-based NCAs (CPT-NCAs) and Sar-NCAs. Then, the detailed and systematic comparison between PEGylation and PSarylation against the 4T1 tumor model indicates that PSar decoration can facilitate the cell endocytosis, greatly enhancing the ICD effects and antitumor efficacy. Therefore, it is believed that this well-developed PSarylation technique will achieve effective and precise cancer treatment in the near future.
Collapse
Affiliation(s)
- Xikuang Yao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Changrui Sun
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Fei Xiong
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Weina Zhang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Wenjing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Yinghui Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Fengwei Huo
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
7
|
Zhang S, Li R, An Z. Degradable Block Copolymer Nanoparticles Synthesized by Polymerization-Induced Self-Assembly. Angew Chem Int Ed Engl 2024; 63:e202315849. [PMID: 38155097 DOI: 10.1002/anie.202315849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Polymerization-induced self-assembly (PISA) combines polymerization and in situ self-assembly of block copolymers in one system and has become a widely used method to prepare block copolymer nanoparticles at high concentrations. The persistence of polymers in the environment poses a huge threat to the ecosystem and represents a significant waste of resources. There is an urgent need to develop novel chemical approaches to synthesize degradable polymers. To meet with this demand, it is crucial to install degradability into PISA nanoparticles. Most recently, degradable PISA nanoparticles have been synthesized by introducing degradation mechanisms into either shell-forming or core-forming blocks. This Minireview summarizes the development in degradable block copolymer nanoparticles synthesized by PISA, including shell-degradable, core-degradable, and all-degradable nanoparticles. Future development will benefit from expansion of polymerization techniques with new degradation mechanisms and adaptation of high-throughput approaches for both PISA syntheses and degradation studies.
Collapse
Affiliation(s)
- Shudi Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ruoyu Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
8
|
Xu C, Zheng MX, Wei Y, Yuan JY. Liquid Crystalline Nanoparticles via Polymerization-Induced Self-Assembly: Morphology Evolution and Function Regulation. Chemistry 2023:e202303586. [PMID: 38079233 DOI: 10.1002/chem.202303586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Indexed: 01/16/2024]
Abstract
Liquid crystalline nanoparticles (LC NPs) are a kind of polymer NPs with LC mesogens, which can form special anisotropic morphologies due to the influence of LC ordering. Owing to the stimuli-responsiveness of the LC blocks, LC NPs show abundant morphology evolution behaviors in response to external regulation. LC NPs have great application potential in nano-devices, drug delivery, special fibers and other fields. Polymerization-induced self-assembly (PISA) method can synthesize LC NPs at high solid content, reducing the harsh demand for reaction solvent of the LC polymers, being a better choice for large-scale production. In this review, we introduced recent research progress of PISA-LC NPs by dividing them into several parts according to the LC mesogen, and discussed the improvement of experimental conditions and the potential application of these polymers.
Collapse
Affiliation(s)
- Chang Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ming-Xin Zheng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yen Wei
- Key Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jin-Ying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Li Z, Wang Z, Wang C, Li W, Fan W, Zhao R, Feng H, Peng D, Huang W. Mechanoluminescent Materials Enable Mechanochemically Controlled Atom Transfer Radical Polymerization and Polymer Mechanotransduction. RESEARCH (WASHINGTON, D.C.) 2023; 6:0243. [PMID: 37795336 PMCID: PMC10546606 DOI: 10.34133/research.0243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/13/2023] [Indexed: 10/06/2023]
Abstract
Organic mechanophores have been widely adopted for polymer mechanotransduction. However, most examples of polymer mechanotransduction inevitably experience macromolecular chain rupture, and few of them mimic mussel's mechanochemical regeneration, a mechanically mediated process from functional units to functional materials in a controlled manner. In this paper, inorganic mechanoluminescent (ML) materials composed of CaZnOS-ZnS-SrZnOS: Mn2+ were used as a mechanotransducer since it features both piezoelectricity and mechanolunimescence. The utilization of ML materials in polymerization enables both mechanochemically controlled radical polymerization and the synthesis of ML polymer composites. This procedure features a mechanochemically controlled manner for the design and synthesis of diverse mechanoresponsive polymer composites.
Collapse
Affiliation(s)
- Zexuan Li
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhenhua Wang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Chen Wang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wenxi Li
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wenru Fan
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Ruoqing Zhao
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Haoyang Feng
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Dengfeng Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|