1
|
Hu Y, Ding M, Lv X, Jiang J, Zhang J, Yang D. Stimuli-Responsive NO Delivery Platforms for Bacterial Infection Treatment. Adv Healthc Mater 2024; 13:e2402240. [PMID: 39171769 DOI: 10.1002/adhm.202402240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/11/2024] [Indexed: 08/23/2024]
Abstract
The prevalence of drug-resistant bacterial infections has emerged as a grave threat to clinical treatment and global human health, presenting one of the foremost challenges in medical care. Thus, there is an urgent imperative to develop safe and efficacious novel antimicrobial strategies. Nitric oxide (NO) is a recognized endogenous signaling molecule, which plays a pivotal role in numerous pathological processes. Currently, NO has garnered significant interest as an antibacterial agent due to its capability to eradicate bacteria, disrupt biofilms, and facilitate wound healing, all while circumventing the emergence of drug resistance. However, the inherently unstable characteristic of NO therapeutic gas renders the controlled administration of NO gases exceedingly challenging. Hence, in this review, the current challenge of bacterial infection is discussed; then it is briefly elucidated the antibacterial mechanism of NO and comprehensively delineate the recent advancements in stimulus-responsive NO delivery platforms, along with their merits, obstacles, and prospective avenues for clinical application. This review offers guidance for future advancements in NO-medicated anti-infection therapy is hoped.
Collapse
Affiliation(s)
- Yanling Hu
- College of Life and Health, Nanjing Polytechnic Institute, Nanjing, 210048, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Meng Ding
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Xinyi Lv
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Jingai Jiang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| |
Collapse
|
2
|
Liu J, Yang C, Merlin D, Xiao B. Hyaluronic acid-functionalized nanoparticles for ulcerative colitis-targeted therapy: a comparative study of oral administration and intravenous injection. Biomater Sci 2024; 12:5834-5844. [PMID: 39415593 DOI: 10.1039/d4bm00898g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Targeted delivery of anti-inflammatory drugs to macrophages has attracted great attention for selectively alleviating the symptoms of ulcerative colitis (UC), while minimizing adverse effects. Herein, we aimed to compare the in vivo pharmacokinetics and therapeutic outcomes of macrophage-targeted nanoparticles (NPs) via oral administration and intravenous injection. Polymeric NPs were employed to load an anti-inflammatory drug (curcumin, CUR), followed by surface functionalization with hyaluronic acid (HA). The resulting HA-CUR-NPs had an average diameter of 281 nm and a negatively charged surface. These NPs showed excellent biocompatibility and a significantly higher cell internalization efficiency in RAW 264.7 macrophages compared with their counterparts (carboxymethyl cellulose-functionalized CUR-encapsulated NPs, CUL-CUR-NPs). Moreover, HA-CUR-NPs exhibited a dramatically stronger capacity to inhibit the mRNA expression levels of the typical pro-inflammatory cytokines from lipopolysaccharide-stimulated macrophages compared with CUL-CUR-NPs. In vivo experiments revealed that HA-CUR-NPs after i.v. injection could improve the pharmacokinetics of CUR, and that it showed much better UC therapeutic outcomes compared with the oral administration way. Collectively, in comparison with HA-CUR-NPs (oral), HA-CUR-NPs (i.v.) possess a higher CUR delivery efficiency to the colitis mucosa, which can be developed as an efficient platform for UC treatment.
Collapse
Affiliation(s)
- Jinhua Liu
- Department of Biotechnology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Chunhua Yang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Digestive Disease Research Group, Georgia State University, Atlanta 30302, Georgia, USA
- Atlanta Veterans Affairs Medical Center, Decatur 30033, Georgia, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Digestive Disease Research Group, Georgia State University, Atlanta 30302, Georgia, USA
- Atlanta Veterans Affairs Medical Center, Decatur 30033, Georgia, USA
| | - Bo Xiao
- Department of Biotechnology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Wu H, Shi C, Li Q, Wang L, Wang R, Chen F, Li R, Guo X, Chen Y, She J. Oral Administration of Bioactive Nanoparticulates for Inflammatory Bowel Disease Therapy by Mitigating Oxidative Stress and Restoring Intestinal Microbiota Homeostasis. Mol Pharm 2024. [PMID: 39462848 DOI: 10.1021/acs.molpharmaceut.4c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The management of inflammatory bowel disease (IBD) continues to pose significant challenges due to the absence of curative therapies and a high rate of recurrence. Therefore, it is imperative to explore novel approaches to enhance the efficacy of IBD therapy. Herein, a bioactive nanoparticulate s is tailored designed to achieve a "Pull-Push" approach for efficient and safe IBD treatment by integrating reactive oxygen species (ROS) scavenging (Pull) with anti-inflammatory agent delivery (Push) in the inflammatory microenvironment. The multifunctional nanomedicine, designated MON-PAMAM@SASP, is developed through the encapsulation of sulfasalazine (SASP), a widely utilized clinical drug for the treatment of IBD, within cationic diselenide-bridged mesoporous organosilica nanoparticles (MONs) that possess significant antioxidant properties. Herein, poly(amidoamine) (PAMAM) endows the original MONs with positive charge characteristics. The MON-PAMAM@SASP not only displays the remarkable capability of neutralizing ROS to ameliorates intestinal damage, but also achieves controllable release of SASP to mitigate intestinal inflammation. Consequently, this nanomedicine effectively mitigates IBD by colitis in mouse models, and our current research has not identified any significant drug toxicity. Beyond regulating inflammatory microenvironment in intestine, treatment with MON-PAMAM@SASP results in increased richness and restores intestinal microbiota homeostasis, thereby mitigating IBD to a certain extent. Together, our work provides a highly versatile "Pull-Push" approach for IBD management and encourages the development of similar nanomedicine to treating multiple inflammatory diseases of gastrointestinal tract.
Collapse
Affiliation(s)
- Hong Wu
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- The Third Department of General Surgery, Xi'an Daxing Hospital Affiliated to Yan'an University, Xi'an 710016, China
| | - Chengxin Shi
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qixin Li
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Lizhao Wang
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ruochen Wang
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China
| | - Fangman Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Ruizhe Li
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaolong Guo
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China
| | - Yinnan Chen
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China
| | - Junjun She
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
4
|
Wang L, Xu R, Meng L, Zhang Q, Qian Z, Chen J, Pan C. A fucoidan-loaded hydrogel coating for enhancing corrosion resistance, hemocompatibility and endothelial cell growth of magnesium alloy for cardiovascular stents. BIOMATERIALS ADVANCES 2024; 163:213960. [PMID: 39029207 DOI: 10.1016/j.bioadv.2024.213960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Although magnesium alloy has received tremendous attention in biodegradable cardiovascular stents, the poor in vivo corrosion resistance and limited endothelialization are still the bottlenecks for its application in cardiovascular stents. Fabrication of the multifunctional bioactive coating with excellent anti-corrosion on the surface is beneficial for rapid re-endothelialization and the normal physiological function recovery of blood vessels. In the present study, a bioactive hydrogel coating was established on the surface of magnesium alloy by copolymerization of sulfobetaine methacrylate (SBMA) and acrylamide (AM) via ultraviolet (UV) polymerization, followed by the immobilization of fucoidan (Fu). The results showed that the as-prepared multifunctional hydrogel coating could enhance the corrosion resistance and the surface wettability of the magnesium alloy surface, endowing it with the ability of selective albumin adsorption; meanwhile, it could augment biocompatibility. The following introduction of fucoidan on the surface could further improve the hemocompatibility characterized by reducing protein adsorption, minimizing hemolysis, and preventing platelet aggregation and activation. Additionally, the immobilized fucoidan promoted endothelial cell (EC) growth, as well as up-regulated the expression of vascular endothelial growth factor (VEGF) and nitric oxide (NO) in endothelial cells (ECs). Consequently, this research paves a novel approach to developing a versatile bioactive coating for magnesium alloy surfaces and lays a foundation in cardiovascular biomaterials.
Collapse
Affiliation(s)
- Lingtao Wang
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Ruiting Xu
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223003, China
| | - Lingjie Meng
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qiuyang Zhang
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Zheng Qian
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Jie Chen
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Changjiang Pan
- School of Medical and Health Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
5
|
Zhang L, Wang K, Zhou L, Zhu Y, Chen X, Wang Y, Zhao Y, Huang N, Luo R, Li X, Wang J. Self-assembled ROS-triggered Bletilla striata polysaccharide-releasing hydrogel dressing for inflammation-regulation and enhanced tissue-healing. Int J Biol Macromol 2024; 278:135194. [PMID: 39256120 DOI: 10.1016/j.ijbiomac.2024.135194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
The antimicrobial and pro-healing properties remain critical clinical objectives for skin wound management. However, the escalating problem of antibiotic overuse and the corresponding rise in bacterial resistance necessitates an urgent shift towards an antibiotic-free approach to antibacterial treatment. The quest for antimicrobial efficacy while accelerating wound healing without antibiotic treatment have emerged as innovative strategies in skin wound treatment. Here, a dual-function hydrogel with antimicrobial and enhanced tissue-healing properties was developed by utilizing cyclodextrin, ferrocene, polyethyleneimine (PEI), and Bletilla striata polysaccharide (BSP), through multiple non-covalent interactions, which can intelligently release BSP by recognizing the wound inflammatory microenvironment through the cyclodextrin-ferrocene unit. Moreover, the porosity (65 % - 85 %), Young's modulus (400 KPa - 140 KPa), and DPPH scavenge rate (18 % - 40 %) of the hydrogel are modulated by varying the BSP content. The hydrogel exhibits outstanding antibacterial properties (98.3 % reduction of Escherichia coli observed after exposure to HTFC@BSP-20 for 24 h) and favorable biocompatibility. Furthermore, in a rat full-thickness skin wound model, the dual-function hydrogel significantly accelerates wound healing, increased CD31 expression promotes vascular regeneration, reduced TNF-α express and inhibited the inflammation. This multifunctional ROS responsive hydrogel provides a new perspective for antibiotics-free treatment of skin injuries.
Collapse
Affiliation(s)
- Lu Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Kebing Wang
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; Smart Industry Terminal Academy, Chengdu Technological University yibin campus, Yibin, Sichuan 644000, China
| | - Lei Zhou
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; Smart Industry Terminal Academy, Chengdu Technological University yibin campus, Yibin, Sichuan 644000, China
| | - Yu Zhu
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Xinyi Chen
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Yuancong Zhao
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Nan Huang
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China.
| | - Xin Li
- Third People's Hospital of Chengdu Affiliated to Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Jin Wang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| |
Collapse
|
6
|
Feng G, Zhang H, Liu H, Zhang X, Jiang H, Liao S, Luo X, Yao H, Xiang B, Liu S, Zhang J, Zhang J, Fang J. Natural Flavonoid-Derived Enzyme Mimics DHKNase Balance the Two-Edged Reactive Oxygen Species Function for Wound Healing and Inflammatory Bowel Disease Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0464. [PMID: 39253100 PMCID: PMC11381673 DOI: 10.34133/research.0464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024]
Abstract
Rational regulation of reactive oxygen species (ROS) plays a vital importance in maintaining homeostasis of living biological systems. For ROS-related pathologies, chemotherapy technology derived from metal nanomaterials currently occupies a pivotal position. However, they suffer from inherent issues such as complicated synthesis, batch-to-batch variability, high cost, and potential biological toxicity caused by metal elements. Here, we reported for the first time that dual-action 3,5-dihydroxy-1-ketonaphthalene-structured small-molecule enzyme imitator (DHKNase) exhibited 2-edged ROS regulation, catering to the execution of physiology-beneficial ROS destiny among diverse pathologies in living systems. Based on this, DHKNase is validated to enable remarkable therapeutic effects in 2 classic disease models, including the pathogen-infected wound-healing model and the dextran sulfate sodium (DSS)-caused inflammatory bowel disease (IBD). This work provides a guiding landmark for developing novel natural small-molecule enzyme imitator and significantly expands their application potential in the biomedical field.
Collapse
Affiliation(s)
- Guangfu Feng
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Huaizu Zhang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Huipeng Liu
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Xiaoyan Zhang
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, P.R. China
| | - Hongmei Jiang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Sijie Liao
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Xingyu Luo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P.R. China
| | - Hao Yao
- Changsha IMADEK Intelligent Technology Co. Ltd., Changsha, Hunan 410081, P.R. China
| | - Bo Xiang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Shiyu Liu
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Jiali Zhang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Jiaheng Zhang
- College of Chemistry, Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Jun Fang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| |
Collapse
|
7
|
Zhang Y, Lin X, Chen X, Fang W, Yu K, Gu W, Wei Y, Zheng H, Piao J, Li F. Strategies to Regulate the Degradation and Clearance of Mesoporous Silica Nanoparticles: A Review. Int J Nanomedicine 2024; 19:5859-5878. [PMID: 38887691 PMCID: PMC11182361 DOI: 10.2147/ijn.s451919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/26/2024] [Indexed: 06/20/2024] Open
Abstract
Mesoporous silica nanoparticles (MSNs) have attracted extensive attention as drug delivery systems because of their unique meso-structural features (high specific surface area, large pore volume, and tunable pore structure), easily modified surface, high drug-loading capacity, and sustained-release profiles. However, the enduring and non-specific enrichment of MSNs in healthy tissues may lead to toxicity due to their slow degradability and hinder their clinical application. The emergence of degradable MSNs provided a solution to this problem. The understanding of strategies to regulate degradation and clearance of these MSNs for promoting clinical trials and expanding their biological applications is essential. Here, a diverse variety of degradable MSNs regarding considerations of physiochemical properties and doping strategies of degradation, the biodistribution of MSNs in vivo, internal clearance mechanism, and adjusting physical parameters of clearance are highlighted. Finally, an overview of these degradable and clearable MSNs strategies for biosafety is provided along with an outlook of the encountered challenges.
Collapse
Affiliation(s)
- Yuelin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Xue Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Xinxin Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Weixiang Fang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Kailing Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Wenting Gu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Yinghui Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Hangsheng Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Jigang Piao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Fanzhu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| |
Collapse
|
8
|
Peng N, Wang J, Zhu H, Liu Z, Ren J, Li W, Wang Y. Protective effect of carbon dots as antioxidants on intestinal inflammation by regulating oxidative stress and gut microbiota in nematodes and mouse models. Int Immunopharmacol 2024; 131:111871. [PMID: 38492339 DOI: 10.1016/j.intimp.2024.111871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Inflammatory bowel disease (IBD) is a recurrent chronic colitis disease with increasing incidence and prevalence year by year. The single efficacy and significant side effects of traditional IBD treatment drugs have promoted the flourishing development of new drugs. Inspired by many health benefits of carbon dots (CDs) based nanomedicine in biomedical applications, a metal-free carbon dots (CP-CDs) was synthesized from citric acid and polyethylene polyamine to treat colitis. Oxidative stress tests at the cellular and nematode levels demonstrated CP-CDs have good antioxidant effects, while the toxicity of CP-CDs to cells and nematodes is low. CP-CDs were further applied to dextran sodium sulfate (DSS)-induced colitis in mice models, and it was found that CP-CDs can reduce the disease activity index (DAI) score of colon tissue and restore the intestinal barrier. Further, the anti-colitis mechanisms of CP-CDs were explored, one of which is to regulate intestinal oxidative stress in inflammatory mice, further reducing the expression of inflammatory cytokines, and thus alleviating colitis. Notably, 16S rRNA sequence analysis showed that the abundance of beneficial bacteria (Ligilactobacillus and Enterorhabdus) in the intestinal tract increased, while that of harmful bacteria (unclassified_Clostridia_UCG_014) decreased after CP-CDs treatment, indicating that CP-CDs rebalancing the gut microbiota destroyed by DSS is another important mechanism. In short, these non-toxic carbon dots not only have the potential for multi-factor combined relief of colitis but also offer an alternative therapy medicine for patients suffering from IBD.
Collapse
Affiliation(s)
- Nannan Peng
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China.
| | - Haimei Zhu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Ziyue Liu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Jiayi Ren
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Wenjing Li
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|