1
|
Schott C, Lebedeva V, Taylor C, Abumelha S, Roshanov PS, Connaughton DM. Utility of Genetic Testing in Adults with CKD: A Systematic Review and Meta-Analysis. Clin J Am Soc Nephrol 2025; 20:101-115. [PMID: 39792540 DOI: 10.2215/cjn.0000000000000564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Key Points
Diagnostic yield of genetic testing in adults with CKD is 40%.Risk factors including positive family history and extra-kidney features associate with higher diagnostic yield, although young age at testing did not.Seventeen percent of patients who received a genetic diagnosis were reclassified into a different phenotype after testing.
Background
Clinical and pathological confirmation of the diagnosis for CKD has limitations, with up to one third of individuals remaining without a formal diagnosis. Increasingly, data suggest that these limitations can be overcome by genetic testing. The objective of this study was to estimate the diagnostic yield of genetic testing in adults with CKD.
Methods
Cohort studies that report diagnostic yield of genetic testing in adults with CKD published in PubMed or Embase between January 1, 2005, and December 31, 2023, were included. The Joanna Briggs Institute critical appraisal tool for prevalence studies was used to assess bias. Duplicate independent data extraction and a meta-analysis of proportions using generalized linear mixed models were completed.
Results
We included 60 studies with 10,107 adults with CKD who underwent genetic testing. We found a diagnostic yield of 40% (95% confidence interval, 33 to 46); yield varied by CKD subtype with the highest yield of 62% (95% confidence interval, 57 to 68) in cystic kidney disease. Positive family history and presence of extra-kidney features were associated with higher diagnostic yield. Reclassification of the before testing diagnosis after a positive genetic testing result occurred in 17% of the solved cohort. Six studies showed the clinical benefits of genetic testing including cascade testing for family members and treatment changes.
Conclusions
Overall, we show that genetic testing is informative in a high proportion of clinically selected adults with CKD. The study was limited by heterogeneity in reporting, testing technologies, and cohort characteristics.
Clinical Trial registry name and registration number:
International prospective register of systematic reviews (CRD42023386880).
Collapse
Affiliation(s)
- Clara Schott
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Victoria Lebedeva
- Division of Nephrology, Department of Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Cambrie Taylor
- Department of Biology, Western University, London, Ontario, Canada
| | - Saeed Abumelha
- Department of Medicine, Division of Nephrology, University Hospital, London Health Sciences Centre, London, Ontario, Canada
| | - Pavel S Roshanov
- Department of Medicine, Division of Nephrology, University Hospital, London Health Sciences Centre, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Dervla M Connaughton
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Division of Nephrology, Department of Medicine, London Health Sciences Centre, London, Ontario, Canada
- Department of Medicine, Division of Nephrology, University Hospital, London Health Sciences Centre, London, Ontario, Canada
| |
Collapse
|
2
|
Delrue C, Speeckaert MM. Decoding Kidney Pathophysiology: Omics-Driven Approaches in Precision Medicine. J Pers Med 2024; 14:1157. [PMID: 39728069 DOI: 10.3390/jpm14121157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Chronic kidney disease (CKD) is a major worldwide health concern because of its progressive nature and complex biology. Traditional diagnostic and therapeutic approaches usually fail to account for disease heterogeneity, resulting in low efficacy. Precision medicine offers a novel approach to studying kidney disease by combining omics technologies such as genomics, transcriptomics, proteomics, metabolomics, and epigenomics. By identifying discrete disease subtypes, molecular biomarkers, and therapeutic targets, these technologies pave the way for personalized treatment approaches. Multi-omics integration has enhanced our understanding of CKD by revealing intricate molecular linkages and pathways that contribute to treatment resistance and disease progression. While pharmacogenomics offers insights into expected responses to personalized treatments, single-cell and spatial transcriptomics can be utilized to investigate biological heterogeneity. Despite significant development, challenges persist, including data integration concerns, high costs, and ethical quandaries. Standardized data protocols, collaborative data-sharing frameworks, and advanced computational tools such as machine learning and causal inference models are required to address these challenges. With the advancement of omics technology, nephrology may benefit from improved diagnostic accuracy, risk assessment, and personalized care. By overcoming these barriers, precision medicine has the potential to develop novel techniques for improving patient outcomes in kidney disease treatment.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
3
|
Ciantar N, Zahra G, Delicata J, Sammut F, Calleja-Agius J, Farrugia E, Said E. Genotype-phenotype of autosomal dominant polycystic kidney disease in Malta. Eur J Med Genet 2024; 69:104934. [PMID: 38537868 DOI: 10.1016/j.ejmg.2024.104934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/14/2024] [Accepted: 03/10/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the development of multiple renal cysts causing kidney enlargement and end-stage renal disease (ESRD) in half the patients by 60 years of age. The aim of the study was to determine the genetic aetiology in Maltese patients clinically diagnosed with ADPKD and correlate the clinical features. METHODS A total of 60 patients over 18 years of age clinically diagnosed with ADPKD were studied using a customized panel of genes that had sufficient evidence of disease diagnosis using next generation sequencing (NGS). The genes studied were PKD1, PKD2, GANAB, DNAJB11, PKHD1 and DZIP1L. Selected variants were confirmed by bidirectional Sanger sequencing with specifically designed primers. Cases where no clinically significant variant was identified by the customized gene panel were then studied by Whole Exome Sequencing (WES). Microsatellite analysis was performed to determine the origin of an identified recurrent variant in the PKD2 gene. Clinical features were studied for statistical correlation with genetic results. RESULTS Genetic diagnosis was reached in 49 (82%) of cases studied. Pathogenic/likely pathogenic variants PKD1 and PKD2 gene were found in 25 and in 23 cases respectively. The relative proportion of genetically diagnosed PKD1:PKD2 cases was 42:38. A pathogenic variant in the GANAB gene was identified in 1 (2%) case. A potentially significant heterozygous likely pathogenic variant was identified in PKHD1 in 1 (2%) case. Potentially significant variants of uncertain significance were seen in 4 (7%) cases of the study cohort. No variants in DNAJB11 and DZIP1L were observed. Whole exome sequencing (WES) added the diagnostic yield by 10% over the gene panel analysis. Overall no clinically significant variant was detected in 6 (10%) cases of the study population by a customized gene panel and WES. One recurrent variant the PKD2 c.709+1G > A was observed in 19 (32%) cases. Microsatellite analysis showed that all variant cases shared the same haplotype indicating that their families may have originated from a common ancestor and confirmed it to be a founder variant in the Maltese population. The rate of decline in eGFR was steeper and progression to ESRD was earlier in cases with PKD1 variants when compared to cases with PKD2 variants. Cases segregating truncating variants in PKD1 showed a significantly earlier onset of ESRD and this was significantly worse in cases with frameshift variants. Overall extrarenal manifestations were commoner in cases segregating truncating variants in PKD1. CONCLUSIONS This study helps to show that a customized gene panel is the first-line method of choice for studying patients with ADPKD followed by WES which increased the detection of variants present in the PKD1 pseudogene region. A founder variant in the PKD2 gene was identified in our Maltese cohort with ADPKD. Phenotype of patients with ADPKD is significantly related to the genotype confirming the important role of molecular investigations in the diagnosis and prognosis of polycystic kidney disease. Moreover, the findings also highlight the variability in the clinical phenotype and indicate that other factors including epigenetic and environmental maybe be important determinants in Autosomal Dominant Polycystic Kidney Disease.
Collapse
Affiliation(s)
- Natalie Ciantar
- Department of Anatomy, Faculty of Medicine & Surgery, University of Malta,Malta
| | - Graziella Zahra
- Department of Pathology, Molecular Diagnostics Laboratory, Mater Dei Hospital, Malta
| | - Julian Delicata
- Department of Medicine, Nephrology and General Medicine Division, Mater Dei Hospital, Malta
| | - Fiona Sammut
- Department of Statistics and Operations Research, Faculty of Science, University of Malta, Malta
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine & Surgery, University of Malta,Malta
| | - Emanuel Farrugia
- Department of Medicine, Nephrology and General Medicine Division, Mater Dei Hospital, Malta
| | - Edith Said
- Department of Anatomy, Faculty of Medicine & Surgery, University of Malta,Malta; Section of Medical Genetics, Department of Pathology, Mater Dei Hospital, Malta.
| |
Collapse
|
4
|
Liu Y, Xu K, Xiang Y, Ma B, Li H, Li Y, Shi Y, Li S, Bai Y. Role of MCP-1 as an inflammatory biomarker in nephropathy. Front Immunol 2024; 14:1303076. [PMID: 38239353 PMCID: PMC10794684 DOI: 10.3389/fimmu.2023.1303076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
The Monocyte chemoattractant protein-1 (MCP-1), also referred to as chemokine ligand 2 (CCL2), belongs to the extensive chemokine family and serves as a crucial mediator of innate immunity and tissue inflammation. It has a notable impact on inflammatory conditions affecting the kidneys. Upon binding to its receptor, MCP-1 can induce lymphocytes and NK cells' homing, migration, activation, differentiation, and development while promoting monocytes' and macrophages' infiltration, thereby facilitating kidney disease-related inflammation. As a biomarker for kidney disease, MCP-1 has made notable advancements in primary kidney diseases such as crescentic glomerulonephritis, chronic glomerulonephritis, primary glomerulopathy, idiopathic proteinuria glomerulopathy, acute kidney injury; secondary kidney diseases like diabetic nephropathy and lupus nephritis; hereditary kidney diseases including autosomal dominant polycystic kidney disease and sickle cell kidney disease. MCP-1 not only predicts the occurrence, progression, prognosis of the disease but is also closely associated with the severity and stage of nephropathy. When renal tissue is stimulated or experiences significant damage, the expression of MCP-1 increases, demonstrating a direct correlation with the severity of renal injury.
Collapse
Affiliation(s)
- Yanlong Liu
- Heilongjiang Provincial Health Commission, Harbin, China
| | - Ke Xu
- Heilongjiang University of Chinese Medicine, The Second Clinical Medical College, Harbin, China
| | - Yuhua Xiang
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Boyan Ma
- Heilongjiang University of Chinese Medicine, The Second Clinical Medical College, Harbin, China
| | - Hailong Li
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Yuan Li
- The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Shi
- Heilongjiang University of Chinese Medicine, The Second Clinical Medical College, Harbin, China
| | - Shuju Li
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Yan Bai
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|