1
|
Hussain MS, Khan G. Current clinical applications of RNA-LNPs in cancer: a promising horizon for targeted therapies. EXCLI JOURNAL 2025; 24:321-324. [PMID: 40071028 PMCID: PMC11895062 DOI: 10.17179/excli2025-8132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Affiliation(s)
- Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Prem Nagar, Dehradun 248007, Uttarakhand, India
| | - Gyas Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
2
|
Zhou J, Cai R, Zhang D, Chen C. Identification of Natural Killer Cell-Associated Clusters in Skin Melanoma and the Impact on Prognosis and Drug Sensitivity. Immun Inflamm Dis 2025; 13:e70143. [PMID: 39960194 PMCID: PMC11831448 DOI: 10.1002/iid3.70143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/05/2025] [Accepted: 01/19/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Skin melanoma exhibits significant heterogeneity in clinical outcomes and treatment responses among patients. This study aimed to investigate natural killer (NK) cell clusters in skin melanoma, their impact on patient prognosis, and their value as biomarkers for tailoring treatment. METHODS We used data from TCGA, GSE19234, GSE65904, GSE244982, and GSE78220. A gene classifier was developed to identify two distinct clusters of melanoma patients. Survival analysis, NK cell infiltration levels, and responses to immune and targeted therapies were evaluated. RESULTS Unsupervised clustering revealed two distinct melanoma patient clusters with significant differences in NK cell activity and clinical outcomes. Cluster 1 showed higher NK cell infiltration, better overall survival (OS) (p < 0.0001), and greater activity in NK-cell-related pathways. In contrast, Cluster 2, characterized by lower NK cell activity and higher exhaustion markers, had poorer OS. Drug sensitivity analysis indicated that Cluster 1 was more responsive to most melanoma treatments, whereas Cluster 2 had higher sensitivity to trametinib (p < 0.001). The developed gene classifier had an AUC of 0.913 and effectively differentiated between clusters. Additionally, Cluster 1 showed better responses to immunotherapy with a higher rate of complete and partial responses (p < 0.001). These findings were validated in external databases. CONCLUSION This study identifies two distinct NK-cell-related clusters in melanoma with differential prognoses and treatment responses. These findings underscore the importance of integrating NK-cell-related profiles into personalized treatment strategies, offering a pathway to optimize therapeutic outcomes based on specific immune profiles.
Collapse
Affiliation(s)
- Jun Zhou
- Department of DermatologyFuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Clinical Medical College of Fujian Medical UniversityFuzhouChina
| | - Renhui Cai
- Department of DermatologyFuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Clinical Medical College of Fujian Medical UniversityFuzhouChina
| | - Danqun Zhang
- Department of DermatologyFuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Clinical Medical College of Fujian Medical UniversityFuzhouChina
| | - Caifeng Chen
- Department of DermatologyFuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Clinical Medical College of Fujian Medical UniversityFuzhouChina
| |
Collapse
|
3
|
Haghighi E, Abolmaali SS, Dehshahri A, Mousavi Shaegh SA, Azarpira N, Tamaddon AM. Navigating the intricate in-vivo journey of lipid nanoparticles tailored for the targeted delivery of RNA therapeutics: a quality-by-design approach. J Nanobiotechnology 2024; 22:710. [PMID: 39543630 PMCID: PMC11566655 DOI: 10.1186/s12951-024-02972-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024] Open
Abstract
RNA therapeutics, such as mRNA, siRNA, and CRISPR-Cas9, present exciting avenues for treating diverse diseases. However, their potential is commonly hindered by vulnerability to degradation and poor cellular uptake, requiring effective delivery systems. Lipid nanoparticles (LNPs) have emerged as a leading choice for in vivo RNA delivery, offering protection against degradation, enhanced cellular uptake, and facilitation of endosomal escape. However, LNPs encounter numerous challenges for targeted RNA delivery in vivo, demanding advanced particle engineering, surface functionalization with targeting ligands, and a profound comprehension of the biological milieu in which they function. This review explores the structural and physicochemical characteristics of LNPs, in-vivo fate, and customization for RNA therapeutics. We highlight the quality-by-design (QbD) approach for targeted delivery beyond the liver, focusing on biodistribution, immunogenicity, and toxicity. In addition, we explored the current challenges and strategies associated with LNPs for in-vivo RNA delivery, such as ensuring repeated-dose efficacy, safety, and tissue-specific gene delivery. Furthermore, we provide insights into the current clinical applications in various classes of diseases and finally prospects of LNPs in RNA therapeutics.
Collapse
Affiliation(s)
- Elahe Haghighi
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Mousavi Shaegh
- Laboratory of Microfluidics and Medical Microsystems, Research Institute for Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Azarpira
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutics, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Yamamoto T, Yuan H, Suzuki S, Nemoto E, Saito M, Yamada S. Procyanidin B2 enhances anti-inflammatory responses of periodontal ligament cells by inhibiting the dominant negative pro-inflammatory isoforms of peroxisome proliferator-activated receptor γ. J Dent Sci 2024; 19:1801-1810. [PMID: 39035263 PMCID: PMC11259626 DOI: 10.1016/j.jds.2023.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 09/23/2023] [Indexed: 07/23/2024] Open
Abstract
Background/purpose Periodontal breakdown in periodontitis is exacerbated by pro-inflammatory responses of periodontal stromal cells such as periodontal ligament fibroblasts (PDLFs). Procyanidin B2 (PB2) is a ligand of the peroxisome proliferator-activated receptor (PPARγ). Herein, we investigated the expression of PPARγ isoforms in PDLFs and periodontal tissue, and examined the effects of PB2 on PPARγ isoform-dependent antiinflammatory responses. Materials and methods PPARγ isoforms were examined by PCR. PPARγ isoform-dependent inflammatory functions and anti-inflammatory effects of PB2 in PDLFs were evaluated based on IL-6 expression. Co-immunoprecipitation analysis of fixed chromatin-tethered protein (CoIPfctp) was conducted to investigate the association of each PPARγ isoform with the NF-κB-transcriptional complex. The effects of PB2 on periodontitis progression were evaluated using a ligature-induced murine periodontitis model. Results Three isoforms of PPARγ were expressed in PDLFs and periodontal tissues, consisting of the main full-length isoform (PPARγ) and two dominant negative isoforms that lack the ligand binding domain, namely the ubiquitously-expressed isoform (PPARγ-UBI) and unknown isoform (PPARγ-PDL). PPARγ and PPARγ-UBI were predominantly expressed. CoIP-fctp revealed that PPARγ-UBI was selectively associated with NF-κB p65, a key transcriptional factor of IL-6 expression. PB2 suppressed LPS-induced-IL-6 expression exacerbated by the over-expression of PPARγ-UBI. In the murine periodontitis model, topical application of PB2 significantly mitigated alveolar bone loss. Conclusion These results suggest that the anti-inflammatory effects of PB2 in periodontal tissues/cells are distinct, and these effects arise from the inhibition of PPARγ-UBI; hence, the application of PB2 and modification of the splicing event in three PPARγ isoforms have therapeutic potential for preventing periodontitis.
Collapse
Affiliation(s)
- Tadahiro Yamamoto
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hang Yuan
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Shigeki Suzuki
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Eiji Nemoto
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Masahiro Saito
- Department of Restorative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Satoru Yamada
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
5
|
Rahimi A, Malakoutikhah Z, Rahimmanesh I, Ferns GA, Nedaeinia R, Ishaghi SMM, Dana N, Haghjooy Javanmard S. The nexus of natural killer cells and melanoma tumor microenvironment: crosstalk, chemotherapeutic potential, and innovative NK cell-based therapeutic strategies. Cancer Cell Int 2023; 23:312. [PMID: 38057843 DOI: 10.1186/s12935-023-03134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
The metastasis of melanoma cells to regional lymph nodes and distant sites is an important contributor to cancer-related morbidity and mortality among patients with melanoma. This intricate process entails dynamic interactions involving tumor cells, cellular constituents, and non-cellular elements within the microenvironment. Moreover, both microenvironmental and systemic factors regulate the metastatic progression. Central to immunosurveillance for tumor cells are natural killer (NK) cells, prominent effectors of the innate immune system with potent antitumor and antimetastatic capabilities. Recognizing their pivotal role, contemporary immunotherapeutic strategies are actively integrating NK cells to combat metastatic tumors. Thus, a meticulous exploration of the interplay between metastatic melanoma and NK cells along the metastatic cascade is important. Given the critical involvement of NK cells within the melanoma tumor microenvironment, this comprehensive review illuminates the intricate relationship between components of the melanoma tumor microenvironment and NK cells, delineating their multifaceted roles. By shedding light on these critical aspects, this review advocates for a deeper understanding of NK cell dynamics within the melanoma context, driving forward transformative strategies to combat this cancer.
Collapse
Affiliation(s)
- Azadeh Rahimi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Malakoutikhah
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Dana N, Ferns GA, Nedaeinia R, Haghjooy Javanmard S. Leptin signaling in breast cancer and its crosstalk with peroxisome proliferator-activated receptors α and γ. Clin Transl Oncol 2023; 25:601-610. [PMID: 36348225 DOI: 10.1007/s12094-022-02988-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
Abstract
Obesity may create a mitogenic microenvironment that influences tumor initiation and progression. The obesity-associated adipokine, leptin regulates energy metabolism and has been implicated in cancer development. It has been shown that some cell types other than adipocytes can express leptin and leptin receptors in tumor microenvironments. It has been shown that peroxisome proliferator-activated receptors (PPAR) agonists can affect leptin levels and vice versa leptin can affect PPARs. Activation of PPARs affects the expression of several genes involved in aspects of lipid metabolism. In addition, PPARs regulate cancer cell progression through their action on the tumor cell proliferation, metabolism, and cellular environment. Some studies have shown an association between obesity and several types of cancer, including breast cancer. There is some evidence that suggests that there is crosstalk between PPARs and leptin during the development of breast cancer. Through a systematic review of previous studies, we have reviewed the published relevant articles regarding leptin signaling in breast cancer and its crosstalk with peroxisome proliferator-activated receptors α and γ.
Collapse
Affiliation(s)
- Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, BN1 9PH, Sussex, UK
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
7
|
Zhang X, Li X, Xiong G, Yun F, Feng Y, Ni Q, Wu N, Yang L, Yi Z, Zhang Q, Yang Z, Kuang Y, Sai B, Zhu Y. Palmitic Acid Promotes Lung Metastasis of Melanomas via the TLR4/TRIF-Peli1-pNF-κB Pathway. Metabolites 2022; 12:1132. [PMID: 36422271 PMCID: PMC9696090 DOI: 10.3390/metabo12111132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 09/05/2023] Open
Abstract
A high-fat diet plays an important role in aggravating cancers. Palmitic acid (PA) is one of the components of saturated fatty acids; it has been reported to promote tumor proliferation in melanomas, but the signal transduction pathway mediated by palmitic acid remains unclear. This study showed that palmitic acid can promote the lung metastasis of melanomas. Moreover, the interaction between palmitic acid and toll-like receptor 4 (TLR4) was predicted by molecular docking. The experimental results proved that palmitic acid could promote the TLR4 and Toll/IL-1 receptor domain-containing adaptor-inducing IFN-β (TRIF) expression. The expression of Pellino1 (Peli1) and the phosphorylation of NF-kappa B (pNF-κB) were downregulated after the suppression of TLR4 and the silencing of Peli1 also inhibited the phosphorylation of NF-κB. Therefore, we concluded that palmitic acid promoted the lung metastasis of melanomas through the TLR4/TRIF-Peli1-pNF-κB pathway.
Collapse
Affiliation(s)
- Xuedan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China
| | - Xiaoyu Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China
| | - Guohang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China
| | - Fang Yun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China
| | - Yu Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China
| | - Qinxuan Ni
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China
| | - Na Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China
| | - Lijuan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China
| | - Zihan Yi
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650500, China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| | - Yingmin Kuang
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
8
|
Vaseghi G, Ghasemi A, Laher I, Alaei H, Dana N, Naji esfahani H, Javanmard SH. Morphine upregulates Toll-like receptor 4 expression and promotes melanomas in mice. Immunopharmacol Immunotoxicol 2022; 45:347-354. [DOI: 10.1080/08923973.2022.2145967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - HojjatAllah Alaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hajar Naji esfahani
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Nascimento MT, Cordeiro RSO, Abreu C, Santos CP, Peixoto F, Duarte GA, Cardoso T, de Oliveira CI, Carvalho E, Carvalho LP. Pioglitazone, a Peroxisome Proliferator-Activated Receptor-γ Agonist, Downregulates the Inflammatory Response in Cutaneous Leishmaniasis Patients Without Interfering in Leishmania braziliensis Killing by Monocytes. Front Cell Infect Microbiol 2022; 12:884237. [PMID: 35909958 PMCID: PMC9329526 DOI: 10.3389/fcimb.2022.884237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Patients with cutaneous leishmaniasis (CL) due to Leishmania braziliensis infection have an exacerbated inflammatory response associated with tissue damage and ulcer development. An increase in the rate of patients who fail therapy with pentavalent antimony has been documented. An adjuvant therapy with an anti-inflammatory drug with the potential of Leishmania killing would benefit CL patients. The aim of the present study was to investigate the contribution of peroxisome proliferator-activated receptor-γ (PPAR-γ) activation by pioglitazone in the regulation of the inflammatory response and L. braziliensis killing by monocytes. Pioglitazone is an oral drug used in the treatment of diabetes, and its main mechanism of action is through the activation of PPAR-γ, which is expressed in many cell types of the immune response. We found that activation of PPAR-γ by pioglitazone decreases the inflammatory response in CL patients without affecting L. braziliensis killing by monocytes. Our data suggest that pioglitazone may serve as an adjunctive treatment for CL caused by L. braziliensis.
Collapse
Affiliation(s)
- Maurício T. Nascimento
- Laboratório de Pesquisas Clínicas, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
- Serviço de Imunologia, Complexo Hospitalar Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Ravena S. O. Cordeiro
- Laboratório de Pesquisas Clínicas, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
| | - Cayo Abreu
- Laboratório de Pesquisas Clínicas, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
| | - Camila P. Santos
- Laboratório de Pesquisas Clínicas, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Fábio Peixoto
- Laboratório de Pesquisas Clínicas, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Gabriela A. Duarte
- Laboratório de Enfermidades Infecciosas Transmitidas por Vetores, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
| | - Thiago Cardoso
- Laboratório de Pesquisas Clínicas, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
- Serviço de Imunologia, Complexo Hospitalar Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Camila I. de Oliveira
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
- Laboratório de Enfermidades Infecciosas Transmitidas por Vetores, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
- Ministério de Ciências e Tecnologia, Instituto Nacional de Ciências e Tecnologia-Doenças Tropicais, Salvador, Brazil
| | - Edgar M. Carvalho
- Laboratório de Pesquisas Clínicas, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
- Serviço de Imunologia, Complexo Hospitalar Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
- Ministério de Ciências e Tecnologia, Instituto Nacional de Ciências e Tecnologia-Doenças Tropicais, Salvador, Brazil
| | - Lucas P. Carvalho
- Laboratório de Pesquisas Clínicas, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
- Serviço de Imunologia, Complexo Hospitalar Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
- Ministério de Ciências e Tecnologia, Instituto Nacional de Ciências e Tecnologia-Doenças Tropicais, Salvador, Brazil
| |
Collapse
|
10
|
Kiaie SH, Majidi Zolbanin N, Ahmadi A, Bagherifar R, Valizadeh H, Kashanchi F, Jafari R. Recent advances in mRNA-LNP therapeutics: immunological and pharmacological aspects. J Nanobiotechnology 2022; 20:276. [PMID: 35701851 PMCID: PMC9194786 DOI: 10.1186/s12951-022-01478-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022] Open
Abstract
In the last decade, the development of messenger RNA (mRNA) therapeutics by lipid nanoparticles (LNP) leads to facilitate clinical trial recruitment, which improves the efficacy of treatment modality to a large extent. Although mRNA-LNP vaccine platforms for the COVID-19 pandemic demonstrated high efficiency, safety and adverse effects challenges due to the uncontrolled immune responses and inappropriate pharmacological interventions could limit this tremendous efficacy. The current study reveals the interplay of immune responses with LNP compositions and characterization and clarifies the interaction of mRNA-LNP therapeutics with dendritic, macrophages, neutrophile cells, and complement. Then, pharmacological profiles for mRNA-LNP delivery, including pharmacokinetics and cellular trafficking, were discussed in detail in cancer types and infectious diseases. This review study opens a new and vital landscape to improve multidisciplinary therapeutics on mRNA-LNP through modulation of immunopharmacological responses in clinical trials.
Collapse
Affiliation(s)
- Seyed Hossein Kiaie
- Department of Formulation Development, ReNAP Therapeutics, Tehran, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology School of Pharmacy , Urmia University of Medical Sciences , Urmia, Iran
| | - Armin Ahmadi
- Department of Chemical & Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Rafieh Bagherifar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatah Kashanchi
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Discovery Hall Room 182, 10900 University Blvd, Manassas, VA, 20110, USA.
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
11
|
Leo M, Muccillo L, Dugo L, Bernini R, Santi L, Sabatino L. Polyphenols Extracts from Oil Production Waste Products (OPWPs) Reduce Cell Viability and Exert Anti-Inflammatory Activity via PPARγ Induction in Colorectal Cancer Cells. Antioxidants (Basel) 2022; 11:antiox11040624. [PMID: 35453308 PMCID: PMC9029425 DOI: 10.3390/antiox11040624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
Olive oil production is associated with the generation of oil production waste products (OPWPs) rich in water-soluble polyphenols that represent serious environmental problems. Yet OPWPs can offer new opportunities by exploiting their bioactive properties. In this study, we chemically characterized OPWPs polyphenolic extracts and investigated their biological activities in normal and colorectal cancer cells. Hydroxytyrosol (HTyr), the major constituent of these extracts, was used as the control. We show that both HTyr and the extracts affect cell viability by inducing apoptosis and cell cycle arrest. They downregulate inflammation by impairing NF-κB phosphorylation and expression of responsive cytokine genes, as TNF-α and IL-8, at both mRNA and protein levels, and prevent any further increase elicited by external challenges. Mechanistically, HTyr and the extracts activate PPARγ while hampering pro-inflammatory genes expression, acting as a specific agonist, likely through a trans-repression process. Altogether, OPWPs polyphenolic extracts show stronger effects than HTyr, conceivably due to additive or synergistic effects of all polyphenols contained. They display anti-inflammatory properties and these results may pave the way for improving OPWPs extraction and enrichment methods to reduce the environmental impact and support their use to ameliorate the inflammation associated with diseases and tumors.
Collapse
Affiliation(s)
- Manuela Leo
- Department of Sciences and Technologies, University of Sannio, Via F. De Sanctis, 82100 Benevento, Italy; (M.L.); (L.M.)
| | - Livio Muccillo
- Department of Sciences and Technologies, University of Sannio, Via F. De Sanctis, 82100 Benevento, Italy; (M.L.); (L.M.)
| | - Laura Dugo
- Department of Science and Technology for Humans and the Environment, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Roma, Italy;
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (R.B.); (L.S.)
| | - Luca Santi
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (R.B.); (L.S.)
| | - Lina Sabatino
- Department of Sciences and Technologies, University of Sannio, Via F. De Sanctis, 82100 Benevento, Italy; (M.L.); (L.M.)
- Correspondence: ; Tel.: +39-0824-305149 or +39-0824-305167
| |
Collapse
|
12
|
Vaseghi G, Dana N, Ghasemi A, Abediny R, Laher I, Javanmard SH. Morphine promotes migration and lung metastasis of mouse melanoma cells. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ELSEVIER) 2022:S0104-0014(22)00001-X. [PMID: 35121060 PMCID: PMC10362449 DOI: 10.1016/j.bjane.2021.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 10/11/2021] [Accepted: 10/24/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Morphine is an analgesic agent used for cancer pain management. There have been recent concerns that the immunosuppressant properties of morphine can also promote cancer metastasis. Morphine is an agonist for toll like receptor 4 (TLR4) that has a dual role in cancer development. The promotor or inhibitor role of morphine in cancer progression remains controversial. We investigated the effects of morphine on migration and metastasis of melanoma cells through TLR4 activation. METHODS Mouse melanoma cells (B16F10) were treated with only morphine (0, 0.1, 1, and 10 μM) or in combination with a TLR4 inhibitor (morphine10 μM +CLI-095 1μM) for either 12 or 24 hours. Migration of cells was analyzed by transwell migration assays. Twenty C57BL/6 male mice were inoculated with B16F10 cells via the left ventricle of the heart and then randomly divided into two groups (n = 10 each) that received either morphine (10 mg.kg-1, sub-q) or PBS injection for 21 days (control group). Animals were euthanized and their lungs removed for evaluation of metastatic nodules. RESULTS Morphine (0.1, 1, and 10 μM) increased cell migration after 12 hours (p < 0.001) and after 24 hours of treatment with morphine (10 μM) (p < 0.001). Treatment with CLI-095 suppressed migration compared to cells treated with morphine alone (p < 0.001). Metastatic nodules in the morphine-treated group (64 nodules) were significantly higher than in the control group (40 nodules) (p < 0.05). CONCLUSION Morphine increases the migration and metastasis of mouse melanoma cells by activating TLR4.
Collapse
Affiliation(s)
- Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical sciences, Isfahan, Iran; Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Ghasemi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Abediny
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ismail Laher
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
13
|
Vaseghi G, Pourhadi M, Ghasemi A, Abediny R, Haghjooy Javanmard S. The inhibitory effects of vanillin on the growth of melanoma by reducing nuclear factor-κB activation. Adv Biomed Res 2022; 11:68. [DOI: 10.4103/abr.abr_280_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 11/04/2022] Open
|
14
|
Zheng Y, Liu Z, Yang X, Liu L, Ahn KS. An updated review on the potential antineoplastic actions of oleuropein. Phytother Res 2021; 36:365-379. [PMID: 34808696 DOI: 10.1002/ptr.7325] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022]
Abstract
Oleuropein is an ester of elenolic acid and hydroxytyrosol (3, 4-dihydroxyphenylethanol). It is a phenolic compound and the most luxuriant in olives. The detailed information related to the anticancer effects of oleuropein was collected from the internet database PubMed/Medline, ResearchGate, Web of Science, Wiley Online Library, and Cnki using appropriate keywords until the end of October 2021. Oleuropein has been shown to have antioxidant, anticancer, antiinflammatory, cardioprotective, neuroprotective, and hepatoprotective effects. Previous studies also revealed that oleuropein could effectively inhibit the malignant progression of esophageal cancer, gastric cancer, breast cancer, lung cancer, liver cancer, pancreatic cancer, ovarian cancer, prostate cancer, and cervical cancer. Recently, the role of oleuropein in inhibiting tumor cell proliferation, invasion, and migration and inducing tumor cell apoptosis has gained extensive attention. In this review, we have summarized the latest research progress related to the antioncogenic mechanisms and the potential role of oleuropein in targeting different human malignancies. Based on these findings, it can be concluded that oleuropein can function as a promising chemopreventive and chemotherapeutic agent against cancer, but its more detailed anticancer effects and underlying mechanisms need to be further validated in future preclinical as well as clinical studies.
Collapse
Affiliation(s)
- Yudong Zheng
- Department of Pharmacology, Basic Medical School of Yangtze University, Jingzhou, China
| | - Zhenzhen Liu
- Department of Pharmacology, Basic Medical School of Yangtze University, Jingzhou, China
| | - Xiulan Yang
- Department of Pharmacology, Basic Medical School of Yangtze University, Jingzhou, China
| | - Lian Liu
- Department of Pharmacology, Basic Medical School of Yangtze University, Jingzhou, China
| | - Kwang Seok Ahn
- Kyung Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Asrar A, Sobhani Z, Behnam MA. Melanoma Cancer Therapy Using PEGylated Nanoparticles and Semiconductor Laser. Adv Pharm Bull 2021; 12:524-530. [PMID: 35935047 PMCID: PMC9348541 DOI: 10.34172/apb.2022.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 05/18/2021] [Accepted: 07/01/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose: Photothermal therapy (PTT) is a procedure that converts laser beam energy to heat so can disturb tumor cells. Carbon nanotubes (CNTs) have unique properties in absorption optical energy and could change optical power into heat in PTT procedures. Additionally, titanium dioxide (TiO2) nanoparticles (NPs) have a unique feature in absorbing and scattering light. Therefore, these mentioned NPs could play a synergistic role in the PTT method.
Methods: CNTs and TiO2 NPs were injected into the melanoma tumor sites of cancerous mice. Then sites were excited using the laser beam (λ = 808 nm, P = 2 W, and I = 4 W/cm2). Injected NPs caused hyperthermia in solid tumors. Tumor size assay, statistical analysis, and histopathological study of the treated cases were performed to assess the role of mentioned NPs in PTT of murine melanoma cancer.
Results: The results showed that CNTs performed better than TiO2 NPs in destroying murine melanoma cancer cells in animals.
Conclusion: The present study compared the photothermal activity of excited CNTs and TiO2 NPs in cancer therapy at the near-infrared spectrum of light. Tumors were destroyed selectively because of their weakened heat resistance versus normal tissue. PTT of malignant melanoma through CNTs caused remarkable necrosis into the tumor tissues versus TiO2 NPs.
Collapse
Affiliation(s)
- Abdorreza Asrar
- Faculty of Naval Aviation, Malek Ashtar University of Technology, Iran
| | - Zahra Sobhani
- Quality Control Department, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Behnam
- Nano Opto-Electronic Research Center, Electrical and Electronics Engineering Department, Shiraz University of Technology, Shiraz, Iran
| |
Collapse
|
16
|
Kumar V. Going, Toll-like receptors in skin inflammation and inflammatory diseases. EXCLI JOURNAL 2021; 20:52-79. [PMID: 33510592 PMCID: PMC7838829 DOI: 10.17179/excli2020-3114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
The Indian Ayurvedic physicians knew the concept of inflammation dating back to 1500 BC. The continuous progress in the immunology of inflammation has explained its undiscovered mechanisms. For example, the discovery of Toll-like receptor 4 (TLR4) in humans (1997) has revolutionized the field of infection biology and innate immunity. The laboratory mice have shown twelve TLRs and express TLR10 (CD290) as a disrupted pseudogene, and humans have ten functional TLRs. Now, it is well established that TLRs play a significant role in different infectious and inflammatory diseases. Skin inflammation and other associated inflammatory diseases, including atopic dermatitis (AD), acne vulgaris, and psoriasis, along with many skin cancers are major health problems all over the world. The continuous development in the immunopathogenesis of inflammatory skin diseases has opened the window of opportunity for TLRs in studying their role. Hence, the manuscript explores the role of different TLRs in the pathogenesis of skin inflammation and associated inflammatory diseases. The article starts with the concept of inflammation, its origin, and the impact of TLRs discovery on infection and inflammation biology. The subsequent section describes the burden of skin-associated inflammatory diseases worldwide and the effect of the geographical habitat of people affecting it. The third section explains skin as an immune organ and explains the expression of different TLRs on different skin cells, including keratinocytes, Langerhans cells (LCs), skin fibroblasts, and melanocytes. The fourth section describes the impact of TLRs on these cells in different skin-inflammatory conditions, including acne vulgaris, AD, psoriasis, and skin cancers. The article also discusses the use of different TLR-based therapeutic approaches as specific to these inflammatory skin diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Children Health Clinical Unit, Faculty of Medicine and Biomedical Sciences, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia
| |
Collapse
|