1
|
Hajihassan Z, Yazdi M, Fadaie A, Akbarsemnani N. Comparison of the efficiency of the Sec and Tat secretory pathways in the secretion of recombinant neurturin protein using de novo designed signal peptides. Prep Biochem Biotechnol 2024; 54:1157-1169. [PMID: 38511632 DOI: 10.1080/10826068.2024.2331203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Since cytoplasmic expression of heterologous proteins with disulfide bonds leads to the formation of inclusion bodies in E. coli, periplasmic production is preferable. The N-terminal signal peptide attached to the secreted protein determines the type of secretory pathway through which the target protein is secreted; Sec, Tat, or SRP. The aim of this study was to design and compare two novel signal peptides for the secretion of recombinant neurturin (as a model) via the Sec and Tat pathways. For this purpose, we aligned the natural signal peptides from E. coli and Bacillus subtilis to identify the conserved amino acids and those with the highest repetition. The SignalP4.1 and TatP1.0 software were used to determine the secretion efficiency of the new signal peptides. The efficiency of new signal peptides was then evaluated and compared experimentally with two naturally used signal peptides. Quantitative analysis of Western blot bands showed that approximately 80% of the expressed neurturin was secreted into the periplasmic space by new signal peptides. Circular dichroism spectroscopy also confirmed the correct secondary structure of the secreted neurturin. In conclusion, these novel signal peptides can be used to secrete any other recombinant proteins to the periplasmic space of E. coli efficiently.
Collapse
Affiliation(s)
- Zahra Hajihassan
- Faculty of Life Science Engineering, College of interdisciplinary science and technologies, University of Tehran, Tehran, Iran
| | - Mina Yazdi
- Faculty of Life Science Engineering, College of interdisciplinary science and technologies, University of Tehran, Tehran, Iran
| | - Atiyeh Fadaie
- Faculty of Life Science Engineering, College of interdisciplinary science and technologies, University of Tehran, Tehran, Iran
| | - Nooshin Akbarsemnani
- Faculty of Life Science Engineering, College of interdisciplinary science and technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Liu X, Ding Y, Shen Y, Liu S, Liu Y, Wang Y, Wang S, Gualerzi CO, Fabbretti A, Guan L, Kong L, Zhang H, Ma H, He C. Prokaryotic Expression and Functional Verification of Antimicrobial Peptide LR GG. Int J Mol Sci 2024; 25:7072. [PMID: 39000180 PMCID: PMC11241267 DOI: 10.3390/ijms25137072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
The antimicrobial peptide LRGG (LLRLLRRGGRRLLRLL-NH2) was designed and chemically synthesized in a study conducted by Jia et al. Gram-negative bacteria were found to be sensitive to LRGG and exhibited a high therapeutic index. Genetic engineering methods were used to create the prokaryotic fusion expression vector pQE-GFP-LRGG, and the resulting corresponding fusion protein GFP-LRGG was subsequently expressed and purified. The precursor GFP was then removed by TEV proteolysis, and pure LRGG was obtained after another round of purification and endotoxin removal. The prokaryotic-expressed antimicrobial peptide LRGG displays a broad-spectrum antibacterial effect on Gram-negative bacteria, and its minimum inhibitory activity (MIC) against Escherichia coli can reach 2 μg/mL. Compared to the chemically synthesized LRGG, the prokaryotic-expressed LRGG exhibits similar temperature, pH, salt ion, serum stability, and cell selectivity. Furthermore, prokaryotic-expressed LRGG showed excellent therapeutic effects in both the infection model of cell selectivity and no embryotoxicity in a Galleria mellonella infection model. The mechanism by which LRGG causes bacterial death was found to be the disruption of the Gram-negative cell membrane.
Collapse
Affiliation(s)
- Xiang Liu
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Yining Ding
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Yuhan Shen
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Sizhuo Liu
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Yuehua Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Yuting Wang
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Shikun Wang
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | | | - Attilio Fabbretti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Lili Guan
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Lingcong Kong
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Haipeng Zhang
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Hongxia Ma
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| | - Chengguang He
- Engineering Research Center, The Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.L.); (Y.W.)
| |
Collapse
|
3
|
Eskandari A, Nezhad NG, Leow TC, Rahman MBA, Oslan SN. Essential factors, advanced strategies, challenges, and approaches involved for efficient expression of recombinant proteins in Escherichia coli. Arch Microbiol 2024; 206:152. [PMID: 38472371 DOI: 10.1007/s00203-024-03871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/31/2023] [Accepted: 01/25/2024] [Indexed: 03/14/2024]
Abstract
Producing recombinant proteins is a major accomplishment of biotechnology in the past century. Heterologous hosts, either eukaryotic or prokaryotic, are used for the production of these proteins. The utilization of microbial host systems continues to dominate as the most efficient and affordable method for biotherapeutics and food industry productions. Hence, it is crucial to analyze the limitations and advantages of microbial hosts to enhance the efficient production of recombinant proteins on a large scale. E. coli is widely used as a host for the production of recombinant proteins. Researchers have identified certain obstacles with this host, and given the growing demand for recombinant protein production, there is an immediate requirement to enhance this host. The following review discusses the elements contributing to the manifestation of recombinant protein. Subsequently, it sheds light on innovative approaches aimed at improving the expression of recombinant protein. Lastly, it delves into the obstacles and optimization methods associated with translation, mentioning both cis-optimization and trans-optimization, producing soluble recombinant protein, and engineering the metal ion transportation. In this context, a comprehensive description of the distinct features will be provided, and this knowledge could potentially enhance the expression of recombinant proteins in E. coli.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, FacultyofBiotechnologyand BiomolecularSciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, FacultyofBiotechnologyand BiomolecularSciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|