1
|
Karam HM, Galal SM, Lotfy DM. Nrf2 and NF-қB interplay in tamoxifen-induced hepatic toxicity: A promising therapeutic approach of sildenafil and low-dose γ radiation. ENVIRONMENTAL TOXICOLOGY 2023; 38:990-996. [PMID: 36715126 DOI: 10.1002/tox.23742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/13/2022] [Accepted: 01/07/2023] [Indexed: 06/18/2023]
Abstract
Tamoxifen-induced hepatotoxicity is an inevitable side effect during breast cancer treatment. Low-dose gamma irradiation (IRR) shows many beneficial effects by stimulating various biological processes. This study evaluates the possible effect of sildenafil and low-dose gamma radiation on liver damages as new treatment strategies. Group I (control), group II: (tamoxifen), group III: (tamoxifen + Sildenafil), group IV: (tamoxifen+ irradiation) and group V: (tamoxifen +Sildenafil + irradiation). Rats were sacrificed after 5 h from tamoxifen injection. Results showed that tamoxifen caused elevation in serum AST, ALT and ALP as well hepatic ROS, iNOS, MDA, Keap-1 and NF-Kb, in addition to diminution in hepatic Nrf2 and HO-1. Exposure to low-dose gamma radiation and sildenafil amended the alterations in the measured parameters in serum and tissue. Moreover, all results were confirmed by histopathological examination. In conclusion, sildenafil and low-dose gamma radiation can mitigate the toxicity induced by tamoxifen in liver tissues. Hence, this treatment could be further evaluated as a new approach for alleviating various liver disorders.
Collapse
Affiliation(s)
- Heba M Karam
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Shereen M Galal
- Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Dina M Lotfy
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
2
|
Jamialahmadi K, Amiri AH, Zahedipour F, Faraji F, Karimi G. Protective Effects of Auraptene against Free Radical-Induced Erythrocytes Damage. J Pharmacopuncture 2022; 25:344-353. [PMID: 36628343 PMCID: PMC9806157 DOI: 10.3831/kpi.2022.25.4.344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 02/08/2022] [Accepted: 11/21/2022] [Indexed: 12/30/2022] Open
Abstract
Objectives Auraptene is the most abundant natural prenyloxycoumarin. Recent studies have shown that it has multiple biological and therapeutic properties, including antioxidant properties. Erythrocytes are constantly subjected to oxidative damage that can affect proteins and lipids within the erythrocyte membrane and lead to some hemoglobinopathies. Due to the lack of sufficient information about the antioxidant effects of auraptene on erythrocytes, this study intended to evaluate the potential of this compound in protecting radical-induced erythrocytes damages. Methods The antioxidant activity of auraptene was measured based on DPPH and FRAP assays. Notably, oxidative hemolysis of human erythrocytes was used as a model to study the ability of auraptene to protect biological membranes from free radical-induced damage. Also, the effects of auraptene in different concentrations (25-400 µM) on AAPH-induced lipid/protein peroxidation, glutathione (GSH) content and morphological changes of erythrocytes were determined. Results Oxidative hemolysis and lipid/protein peroxidation of erythrocytes were significantly suppressed by auraptene in a time and concentration-dependent manner. Auraptene prevented the depletion of the cytosolic antioxidant GSH in erythrocytes. Furthermore, it inhibited lipid and protein peroxidation in a time and concentration-dependent manner. Likewise, FESEM results demonstrated that auraptene reduced AAPH-induced morphological changes in erythrocytes. Conclusion Auraptene efficiently protects human erythrocytes against free radicals. Therefore, it can be a potent candidate for treating oxidative stress-related diseases.
Collapse
Affiliation(s)
- Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Amiri
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Zahedipour
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Faraji
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding Author Gholamreza Karimi, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran, Tel: +98-513-180-1191, E-mail:
| |
Collapse
|
3
|
El Azab EF, Saleh AM, Yousif SO, Mazhari BBZ, Abu Alrub H, Elfaki EM, Hamza A, Abdulmalek S. New insights into geraniol's antihemolytic, anti-inflammatory, antioxidant, and anticoagulant potentials using a combined biological and in silico screening strategy. Inflammopharmacology 2022; 30:1811-1833. [PMID: 35932440 DOI: 10.1007/s10787-022-01039-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/15/2022] [Indexed: 11/05/2022]
Abstract
The study aims to assess the antihemolytic and antioxidant activities of geraniol versus 2, 2'-azobis, 2-amidinopropane dihydro-chloride- (AAPH-) induced oxidative damage and hemolysis to erythrocytes and its anti-inflammatory potential against lipopolysaccharide- (LPS-) induced inflammation in white blood cells (WBCs) with a focus on its integrated computational strategies against different targeted receptors participating in inflammation and coagulation. The rats' erythrocyte suspension was incubated with different geraniol concentrations. Molecular docking and simulation were used to explore the possible interaction patterns of geraniol against the potential targeted proteins for therapeutic screening. The results displayed that geraniol had a prolonged noteworthy effect on activated partial thromboplastin time and thromboplastin time. Geraniol displayed strong antioxidant effects via reduced malondialdehyde (MDA) formation and increased GSH level and SOD activity. We observed dose-dependent prevention of K+ ion leakage along with a remarkable decline of hemolysis in erythrocytes pretreated with geraniol. Geraniol 100 µg/mL and diclofenac 100 µM were nontoxic to WBCs. Geraniol significantly reduces the expression and release of cellular pro-inflammatory factors TNF-α, IL-1β, IL-8, and nitric oxide, accompanied by a significant upregulation of gene expression of anti-inflammatory cytokine IL-10 in LPS-induced WBCs compared to nontreated cells. It demonstrates a much stronger inhibition potential than diclofenac in terms of inflammation inhibition. When comparing molecular docking and simulation data, current work showed that geraniol has a good affinity toward apoptosis signal-regulating kinase 1 (ASK1) and human P2Y12 receptors and could be developed as an antioxidant, anti-inflammatory, and anticoagulant medication in the future. Consequently, geraniol is recommended to have a defensive influence against oxidative stress, and hemolysis also could be developed as a promising anti-inflammatory, antioxidant, and anticoagulant medication.
Collapse
Affiliation(s)
- Eman Fawzy El Azab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat, 77454, Saudi Arabia. .,Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Abdulrahman M Saleh
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Sara Osman Yousif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat, 77454, Saudi Arabia.,Department of Clinical Chemistry, Faculty of Medical Laboratory Sciences, Sudan University of Science and Technology, Khartoum, Sudan
| | - Bi Bi Zainab Mazhari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat, 77454, Saudi Arabia
| | - Heba Abu Alrub
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat, 77454, Saudi Arabia
| | - Elyasa Mustafa Elfaki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat, 77454, Saudi Arabia
| | - Alneil Hamza
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat, 77454, Saudi Arabia
| | - Shaymaa Abdulmalek
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| |
Collapse
|
4
|
Kordulewska N, Topa J, Cieślińska A, Jarmołowska B. Osthole Regulates Secretion of Pro-Inflammatory Cytokines and Expression of TLR2 and NF-κB in Normal Human Keratinocytes and Fibroblasts. J Inflamm Res 2022; 15:1501-1519. [PMID: 35261546 PMCID: PMC8898189 DOI: 10.2147/jir.s349216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Natalia Kordulewska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
- Correspondence: Natalia Kordulewska, Tel + 48 89 523 37 63, Fax + 48 89 535 20 15, Email
| | - Justyna Topa
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Cieślińska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Beata Jarmołowska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
5
|
EL AZAB EF, MOSTAFA HS. Phytochemical analysis and antioxidant defense of kiwifruit (Actinidia deliciosa) against pancreatic cancer and AAPH-induced RBCs hemolysis. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.06021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|