Bellaagh Johansson T, Klahn AL, Göteson A, Abé C, Sellgren CM, Landén M. Cerebrospinal Fluid Biomarkers of Central Nervous System Inflammation Predict Cortical Decline in Bipolar Disorder and Ventricular Enlargement in Healthy Controls.
Neuropsychobiology 2024;
84:38-47. [PMID:
39626639 PMCID:
PMC11797920 DOI:
10.1159/000542888]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/28/2024] [Indexed: 02/06/2025]
Abstract
INTRODUCTION
Bipolar disorder has been associated with significant structural brain changes, potentially driven by central nervous system (CNS) inflammation. This study aimed to investigate the relationship between inflammation biomarkers in cerebrospinal fluid (CSF) and longitudinal structural brain changes.
METHODS
We included 29 individuals with bipolar disorder and 34 healthy controls, analyzing three selected inflammation-related biomarkers - interleukin-6 (IL-6), interleukin-8 (IL-8), and chitinase-3-like protein 1 (YKL-40) - in both blood serum and CSF. Structural brain changes were assessed through magnetic resonance imaging at two timepoints, focusing on cortical thickness of the middle temporal cortex and inferior frontal gyrus, as well as ventricular volume.
RESULTS
In healthy controls, baseline CSF levels of YKL-40 predicted ventricular enlargement in both hemispheres. Among individuals with bipolar disorder, higher baseline levels of IL-8 were associated with a decline in cortical thickness in the right and left middle temporal cortex, as well as the right inferior frontal gyrus. No significant associations were observed with serum biomarkers.
CONCLUSIONS
These findings suggest that CSF IL-8 may contribute to cortical decline in bipolar disorder. The lack of association between serum biomarkers and brain changes highlights the specificity of CNS inflammation in these processes. Additionally, the observed link between CSF YKL-40 and ventricular enlargement in healthy controls may indicate a role of CNS inflammation processes in normal brain aging.
INTRODUCTION
Bipolar disorder has been associated with significant structural brain changes, potentially driven by central nervous system (CNS) inflammation. This study aimed to investigate the relationship between inflammation biomarkers in cerebrospinal fluid (CSF) and longitudinal structural brain changes.
METHODS
We included 29 individuals with bipolar disorder and 34 healthy controls, analyzing three selected inflammation-related biomarkers - interleukin-6 (IL-6), interleukin-8 (IL-8), and chitinase-3-like protein 1 (YKL-40) - in both blood serum and CSF. Structural brain changes were assessed through magnetic resonance imaging at two timepoints, focusing on cortical thickness of the middle temporal cortex and inferior frontal gyrus, as well as ventricular volume.
RESULTS
In healthy controls, baseline CSF levels of YKL-40 predicted ventricular enlargement in both hemispheres. Among individuals with bipolar disorder, higher baseline levels of IL-8 were associated with a decline in cortical thickness in the right and left middle temporal cortex, as well as the right inferior frontal gyrus. No significant associations were observed with serum biomarkers.
CONCLUSIONS
These findings suggest that CSF IL-8 may contribute to cortical decline in bipolar disorder. The lack of association between serum biomarkers and brain changes highlights the specificity of CNS inflammation in these processes. Additionally, the observed link between CSF YKL-40 and ventricular enlargement in healthy controls may indicate a role of CNS inflammation processes in normal brain aging.
Collapse