Kounatidis D, Vallianou NG, Poulaki A, Evangelopoulos A, Panagopoulos F, Stratigou T, Geladari E, Karampela I, Dalamaga M. ApoB100 and Atherosclerosis: What's New in the 21st Century?
Metabolites 2024;
14:123. [PMID:
38393015 PMCID:
PMC10890411 DOI:
10.3390/metabo14020123]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
ApoB is the main protein of triglyceride-rich lipoproteins and is further divided into ApoB48 in the intestine and ApoB100 in the liver. Very low-density lipoprotein (VLDL) is produced by the liver, contains ApoB100, and is metabolized into its remnants, intermediate-density lipoprotein (IDL) and low-density lipoprotein (LDL). ApoB100 has been suggested to play a crucial role in the formation of the atherogenic plaque. Apart from being a biomarker of atherosclerosis, ApoB100 seems to be implicated in the inflammatory process of atherosclerosis per se. In this review, we will focus on the structure, the metabolism, and the function of ApoB100, as well as its role as a predictor biomarker of cardiovascular risk. Moreover, we will elaborate upon the molecular mechanisms regarding the pathophysiology of atherosclerosis, and we will discuss the disorders associated with the APOB gene mutations, and the potential role of various drugs as therapeutic targets.
Collapse