1
|
Quadri A, Barbaresi A, Tassinari P, Bertaccini A, Contaldo N, Mercolini L, Protti M, Montalbetti R, Laurita R, Torreggiani D. Enhancement of vindoline and catharanthine production in Catharanthus roseus by LED light and plasma activated water. PLoS One 2024; 19:e0315542. [PMID: 39739713 DOI: 10.1371/journal.pone.0315542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/27/2024] [Indexed: 01/02/2025] Open
Abstract
This study aimed to increase the concentrations of vindoline (VDL) and catharanthine (CAT) in Catharanthus roseus plants cultivated in an indoor farming system using artificial lighting and plasma-activated water (PAW). After a 61-days pre-treatment period under fluorescent lamps, plants were exposed to four treatments: white light (W) from the same fluorescent lamps, red light (R) from LEDs, W with PAW, and R with PAW. These combinations were evaluated at two sampling times: 45 days (T1) and 70 days (T2) after the end of pre-treatment (DAP). Results showed that R combined with PAW significantly increased VDL and CAT concentrations compared to other combinations. In particular, with PAW, R produced significantly higher VDL and CAT concentrations than W, while without PAW, VDL and CAT concentrations were comparable under W and R. Regardless of the light conditions, VDL and CAT concentrations were higher with PAW. Moreover, VDL and CAT concentrations increased from T1 to T2, reaching higher levels under R or PAW at T2. At the same sampling time, VDL and CAT levels were generally higher in plants exposed to R and in those treated with PAW. The highest VDL and CAT concentrations were observed with combined R and PAW at T2. The study concluded that: (1) VDL and CAT concentrations increase with plant age; (2) PAW enhances VDL and CAT concentrations, with its effect becoming more pronounced from T1 to T2; (3) R contributes to VDL and CAT biosynthesis, but its impact becomes significant only when combined with PAW and its effect is amplified from T1 to T2; (4) regardless of the sampling time, the treatment with R and PAW maximizes the VDL and CAT concentrations; (5) R combined with PAW at T2 is the most effective treatment; (6) if harvest timing cannot be delayed, using R and PAW offers substantial benefits.
Collapse
Affiliation(s)
- Alessandro Quadri
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Alberto Barbaresi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Patrizia Tassinari
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Assunta Bertaccini
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Nicoletta Contaldo
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
- Institute for Sustainable Plant Protection (IPSP), Bari-National Research Council, Bari, Italy
| | - Laura Mercolini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Michele Protti
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Roberto Montalbetti
- Department of Industrial Engineering (DIN), University of Bologna, Bologna, Italy
| | - Romolo Laurita
- Department of Industrial Engineering (DIN), University of Bologna, Bologna, Italy
| | - Daniele Torreggiani
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Li H, Cheng C, Chen M, Li Y, Li J, Ye W, Sun G. Integrated analysis of miRNA-mRNA regulatory networks in Anoectochilus roxburghii in response to blue laser light. TREE PHYSIOLOGY 2024; 44:tpae144. [PMID: 39680649 DOI: 10.1093/treephys/tpae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/21/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
Anoectochilus roxburghii (Wall.) Lind. has significant medicinal and economic value, and the social demand for this species is increasing annually. Laser light sources have different luminescent mechanisms compared with ordinary light sources and are also important factors regulating the synthesis of functional metabolites in A. roxburghii. However, the regulatory mechanism through which A. roxburghii responds to blue laser light has not been investigated. Previous studies have shown that blue-laser treatment results in more red leaves than blue- or white-light treatment. Here, the differences in the effects of laser treatment on A. roxburghii were analyzed by transcriptome sequencing. Gene Ontology analysis revealed that the membranes, calcium ion binding, brassinosteroid-mediated signaling pathway and response to salicylic acid play important roles in the response of A. roxburghii to blue laser light. Kyoto Encyclopedia of Genes and Genomes analysis revealed the involvement of multiple pathways in the response to blue-laser treatment, and among these, beta biosynthesis, flavone and flavonol biosynthesis, thiamine metabolism, limonene and pinene biosynthesis, and peroxisomes play core roles. Cytoscape interaction analysis of the differentially expressed miRNA targets indicated that novel_miR_66, novel_miR_78 and novel_miR_212 were most likely involved in the effect of blue laser light on A. roxburghii. Metabolic content measurements showed that blue laser light increased the beet red pigment, thiamine, total flavonoid and limonene contents, and qPCR analysis confirmed that novel_miR_21, novel_miR_66, novel_miR_188 and novel_miR_194 might participate in the blue-laser signaling network through their target genes and thereby regulate the functional metabolite accumulation in A. roxburghii. This study provides a scientific basis for high-yield A. roxburghii production.
Collapse
Affiliation(s)
- Hansheng Li
- Fujian Provincial Key Laboratory of Bamboo Resources Development and Utilization, Sanming University, No. 25 Jingdong, Sanming City, Fujian Province, 365004, China
| | - Chunzhen Cheng
- College of Horticulture, Shanxi Agricultural University, No. 81 Longcheng Street, Xiaodian District, Taiyuan City, Shanxi Province, 030801, China
| | - Mulan Chen
- Sanming Agriculture and Rural Bureau, Building 37, Hongyan New Village, Sanyuan District, Sanming City, Fujian Province, 365004, China
| | - Yuqing Li
- Fujian Provincial Key Laboratory of Bamboo Resources Development and Utilization, Sanming University, No. 25 Jingdong, Sanming City, Fujian Province, 365004, China
| | - Jinkun Li
- Xiamen Topstar Lighting Company Limited, 676 Meixi Road, Tong'an District, Xiamen City, Fujian Province, 361000, China
| | - Wei Ye
- The Institute of Medicinal Plant, Sanming Academy of Agricultural Science, Zhuyuan Village, Qiujiang Street Office, Shaxian County, Fujian Province, 365509, China
| | - Gang Sun
- Fujian Provincial Key Laboratory of Bamboo Resources Development and Utilization, Sanming University, No. 25 Jingdong, Sanming City, Fujian Province, 365004, China
| |
Collapse
|
3
|
Li H, Qiu Y, Sun G, Ye W. RNA sequencing-based exploration of the effects of blue laser irradiation on mRNAs involved in functional metabolites of D. officinales. PeerJ 2022; 9:e12684. [PMID: 35036158 PMCID: PMC8740519 DOI: 10.7717/peerj.12684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022] Open
Abstract
Dendrobium officinale Kimura et Migo (D. officinale) has promising lung moisturizing, detoxifying, and immune boosting properties. Light is an important factor influencing functional metabolite synthesis in D. officinale. The mechanisms by which lasers affect plants are different from those of ordinary light sources; lasers can effectively address the shortcomings of ordinary light sources and have significant interactions with plants. Different light treatments (white, blue, blue laser) were applied, and the number of red leaves under blue laser was greater than that under blue and white light. RNA-seq technology was used to analyze differences in D. officinale under different light treatments. The results showed 465, 2,107 and 1,453 differentially expressed genes (DEGs) in LB-B, LB-W and W-B, respectively. GO, KEGG and other analyses of DEGs indicated that D. officinale has multiple blue laser response modes. Among them, the plasma membrane, cutin, suberine and wax biosynthesis, flavone and flavonol biosynthesis, heat shock proteins, etc. play central roles. Physiological and biochemical results verified that blue laser irradiation significantly increases POD, SOD, and PAL activities in D. officinale. The functional metabolite results showed that blue laser had the greatest promoting effect on total flavonoids, polysaccharides, and alkaloids. qPCR verification combined with other results suggested that CRY DASH, SPA1, HY5, and PIF4 in the blue laser signal transduction pathway affect functional metabolite accumulation in D. officinale through positively regulated expression patterns, while CO16 and MYC2 exhibit negatively regulated expression patterns. These findings provide new ideas for the efficient production of metabolites in D. officinale.
Collapse
Affiliation(s)
- Hansheng Li
- College of Architectural Engineering, Sanming University, Sanming, Chian
| | - Yuqiang Qiu
- Xiamen Institute of Technology, Xiamen, China
| | - Gang Sun
- College of Resources and Chemical Engineering, Sanming University, Sanming, China
| | - Wei Ye
- The Institute of Medicinal Plant, Sanming Academy of Agricultural Science, Shaxian, China
| |
Collapse
|
4
|
Li H, Ye W, Wang Y, Chen X, Fang Y, Sun G. RNA sequencing-based exploration of the effects of far-red light on lncRNAs involved in the shade-avoidance response of D. officinale. PeerJ 2021; 9:e10769. [PMID: 33614278 PMCID: PMC7883695 DOI: 10.7717/peerj.10769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/22/2020] [Indexed: 12/05/2022] Open
Abstract
Dendrobium officinale (D. officinale) is a valuable medicinal plant with a low natural survival rate, and its shade-avoidance response to far-red light is as an important strategy used by the plant to improve its production efficiency. However, the lncRNAs that play roles in the shade-avoidance response of D. officinale have not yet been investigated. This study found that an appropriate proportion of far-red light can have several effects, including increasing the leaf area and accelerating stem elongation, in D. officinale. The effects of different far-red light treatments on D. officinale were analysed by RNA sequencing technology, and a total of 69 and 78 lncRNAs were differentially expressed in experimental group 1 (FR1) versus the control group (CK) (FR1-CK) and in experimental group 4 (FR4) versus the CK (FR4-CK), respectively. According to GO and KEGG analyses, most of the differentially expressed lncRNA targets are involved in the membrane, some metabolic pathways, hormone signal transduction, and O-methyltransferase activity, among other functions. Physiological and biochemical analyses showed that far-red light promoted the accumulation of flavonoids, alkaloids, carotenoids and polysaccharides in D. officinale. The effect of far-red light on D. officinalemight be closely related to the cell membrane and Ca2+ transduction. Based on a Cytoscape analysis and previous research, this study also found that MSTRG.38867.1, MSTRG.69319.1, and MSTRG.66273.1, among other components, might participate in the far-red light signalling network through their targets and thus regulate the shade-avoidance response of D. officinale. These findings will provide new insights into the shade-avoidance response of D. officinale.
Collapse
Affiliation(s)
- Hansheng Li
- College of Resources and Chemical Engineering, Sanming University, Sanming, China
| | - Wei Ye
- The Institute of Medicinal Plant, Sanming Academy of Agricultural Science, Shaxian, China
| | - Yaqian Wang
- College of Resources and Chemical Engineering, Sanming University, Sanming, China
| | - Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Fang
- College of Resources and Chemical Engineering, Sanming University, Sanming, China
| | - Gang Sun
- College of Resources and Chemical Engineering, Sanming University, Sanming, China
| |
Collapse
|
5
|
Zhang S, Zhang L, Zou H, Qiu L, Zheng Y, Yang D, Wang Y. Effects of Light on Secondary Metabolite Biosynthesis in Medicinal Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:781236. [PMID: 34956277 PMCID: PMC8702564 DOI: 10.3389/fpls.2021.781236] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/17/2021] [Indexed: 05/16/2023]
Abstract
Secondary metabolites (SMs) found in medicinal plants are one of main sources of drugs, cosmetics, and health products. With the increase in demand for these bioactive compounds, improving the content and yield of SMs in medicinal plants has become increasingly important. The content and distribution of SMs in medicinal plants are closely related to environmental factors, especially light. In recent years, artificial light sources have been used in controlled environments for the production and conservation of medicinal germplasm. Therefore, it is essential to elucidate how light affects the accumulation of SMs in different plant species. Here, we systematically summarize recent advances in our understanding of the regulatory roles of light quality, light intensity, and photoperiod in the biosynthesis of three main types of SMs (polyphenols, alkaloids, and terpenoids), and the underlying mechanisms. This article provides a detailed overview of the role of light signaling pathways in SM biosynthesis, which will further promote the application of artificial light sources in medicinal plant production.
Collapse
Affiliation(s)
- Shuncang Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Lei Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Haiyan Zou
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Lin Qiu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Yuwei Zheng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Dongfeng Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Dongfeng Yang,
| | - Youping Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
- Youping Wang,
| |
Collapse
|
6
|
Li H, Lyu Y, Chen X, Wang C, Yao D, Ni S, Lin Y, Chen Y, Zhang Z, Lai Z. Exploration of the Effect of Blue Light on Functional Metabolite Accumulation in Longan Embryonic Calli via RNA Sequencing. Int J Mol Sci 2019; 20:E441. [PMID: 30669555 PMCID: PMC6359358 DOI: 10.3390/ijms20020441] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 01/07/2023] Open
Abstract
Light is an important factor that affects the synthesis of functional metabolites in longan embryogenic calli (ECs). However, analysis of the effect of light on functional metabolites in longan ECs via RNA sequencing has rarely been reported and their light regulation network is unclear. The contents of various functional metabolites as well as the enzymatic activities of superoxide dismutase and peroxidase and the level of H₂O₂ in longan ECs were significantly higher under blue light treatment than under the other treatments (dark, white). In this study, we sequenced three mRNA libraries constructed from longan ECs subjected to different treatments. A total of 4463, 1639 and 1806 genes were differentially expressed in the dark versus blue (DB), dark versus white (DW) and white versus blue (WB) combinations, respectively. According to GO and KEGG analyses, most of the differentially expressed genes (DEGs) identified were involved in transmembrane transport, taurine and hypotaurine metabolism, calcium transport and so forth. Mapman analysis revealed that more DEGs were identified in each DB combination pathway than in DW combination pathways, indicating that blue light exerts a significantly stronger regulatory effect on longan EC metabolism than the other treatments. Based on previous research and transcriptome data mining, a blue light signaling network of genes that affect longan functional metabolites was constructed and HY5, PIF4 and MYC2 were shown to be the key regulatory genes in the network. The results of this study demonstrate that the expression levels of phase-specific genes vary with changes in longan EC functional metabolites.
Collapse
Affiliation(s)
- Hansheng Li
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Resources and Chemical Engineering, Sanming University, Sanming 365004, China.
| | - Yumeng Lyu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Congqiao Wang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Deheng Yao
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shanshan Ni
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
7
|
Wang CC, Meng LH, Gao Y, Grierson D, Fu DQ. Manipulation of Light Signal Transduction Factors as a Means of Modifying Steroidal Glycoalkaloids Accumulation in Tomato Leaves. FRONTIERS IN PLANT SCIENCE 2018; 9:437. [PMID: 29706975 PMCID: PMC5906708 DOI: 10.3389/fpls.2018.00437] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/21/2018] [Indexed: 05/19/2023]
Abstract
Steroidal glycoalkaloids (SGAs) are cholesterol-derived specialized metabolites produced by Solanaceous plant species. They contribute to pathogen defense but are considered as anti-nutritional compounds and toxic to humans. Although the genes involved in the SGA biosynthetic pathway have been successfully cloned and identified, transcription factors regulating this pathway are still poorly understood. We report that silencing tomato light signal transduction transcription factors ELONGATED HYPOCOTYL 5 (SlHY5) and PHYTOCHROME INTERACTING FACTOR3 (SlPIF3), by virus-induced gene silencing (VIGS), altered glycoalkaloids levels in tomato leaves compared to control plant. Electrophoretic mobility shift assay (EMSA) and Chromatin immunoprecipitation (ChIP) analysis confirmed that SlHY5 and SlPIF3 bind to the promoter of target genes of GLYCOALKALOID METABOLISM (GAME1, GAME4, GAME17), affecting the steady-state concentrations of transcripts coding for SGA pathway enzymes. The results indicate that light-signaling transcription factors HY5 and PIF3 regulate the abundance of SGAs by modulating the transcript levels of these GAME genes. This insight into the regulation of SGA biosynthesis can be used for manipulating the level of these metabolites in crops.
Collapse
Affiliation(s)
- Cui-cui Wang
- Fruit Biology Laboratory, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lan-huan Meng
- Fruit Biology Laboratory, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ying Gao
- Fruit Biology Laboratory, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Donald Grierson
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Da-qi Fu
- Fruit Biology Laboratory, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- *Correspondence: Da-qi Fu
| |
Collapse
|