1
|
Niu T, Yu J, Wang Z, Wang C, Guo Y, Li J, Wang X. Purification of triterpenoid saponins and 25R/25S-inokosterone from Achyranthes bidentata Bl. by high-speed countercurrent chromatography coupled silver nitrate coordination. J Sep Sci 2024; 47:e2300901. [PMID: 38605456 DOI: 10.1002/jssc.202300901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/13/2024]
Abstract
An effective method by high-speed countercurrent chromatography coordinated with silver nitrate for the preparative separation of sterones and triterpenoid saponins from Achyranthes bidentata Blume was developed. Methyl tert-butyl ether/n-butanol/acetonitrile/water (4:2:3:8, v/v/v/v) was selected for 20-hydroxyecdysone (compound 1), chikusetsusaponin IVa methyl ester (compound 4), 2'-glycan-11-keto-pigmented saponin V (compound 5), as well as a pair of isomers of 25S-inokosterone (compound 2) and 25R-inokosterone (compound 3), which were further purified by silver nitrate coordinated high-speed countercurrent chromatography. What is more, dichloromethane/methanol/isopropanol/water (6:6:1:4, v/v/v/v) was applied for calenduloside E (compound 6), 3β-[(O-β-d-glucuronopyranosyl)-oxy]-oleana-11,13-dien-28-oic acid (compound 7), zingibroside R1 (compound 8) and chikusetsusaponin IVa (compound 9). Adding Ag+ to the solvent system resulted in unique selectivity for 25R/25S isomers of inokosterone, which increased the complexing capability and stability of Ag+ coordinated 25S-inokosterone, as well as the α value between them. These results were further confirmed by the computational calculation of geometry optimization and frontier molecular orbitals assay. Comprehensive mass spectrometry and nuclear magnetic resonance analysis demonstrated the structures of the obtained compounds.
Collapse
Affiliation(s)
- Tong Niu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Jinqian Yu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Zhenqiang Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Chuangchuang Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Yingjian Guo
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| | - Jian Li
- Jinan Institute of Product Quality Inspection, Jinan, P. R. China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, P. R. China
| |
Collapse
|
2
|
Identification of a Hydroxygallic Acid Derivative, Zingibroside R1 and a Sterol Lipid as Potential Active Ingredients of Cuscuta chinensis Extract That Has Neuroprotective and Antioxidant Effects in Aged Caenorhabditis elegans. Nutrients 2022; 14:nu14194199. [PMID: 36235851 PMCID: PMC9570774 DOI: 10.3390/nu14194199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022] Open
Abstract
We examined the effects of the extracts from two traditional Chinese medicine plants, Cuscuta chinensis and Eucommia ulmoides, on the healthspan of the model organism Caenorhabditis elegans. C. chinensis increased the short-term memory and the mechanosensory response of aged C. elegans. Furthermore, both extracts improved the resistance towards oxidative stress, and decreased the intracellular level of reactive oxygen species. Chemical analyses of the extracts revealed the presence of several bioactive compounds such as chlorogenic acid, cinnamic acid, and quercetin. A fraction from the C. chinensis extract enriched in zingibroside R1 improved the lifespan, the survival after heat stress, and the locomotion in a manner similar to the full C. chinensis extract. Thus, zingibroside R1 could be (partly) responsible for the observed health benefits of C. chinensis. Furthermore, a hydroxygallic acid derivative and the sterol lipid 4-alpha-formyl-stigmasta-7,24(241)-dien-3-beta-ol are abundantly present in the C. chinensis extract and its most bioactive fraction, but hardly in E. ulmoides, making them good candidates to explain the overall healthspan benefits of C. chinensis compared to the specific positive effects on stress resistance by E. ulmoides. Our findings highlight the overall anti-aging effects of C. chinensis in C. elegans and provide first hints about the components responsible for these effects.
Collapse
|
3
|
Abstract
Achyranthes root is a crude drug used as diuretic, tonic and remedy for blood stasis. Characteristic oleanolic acid saponins with a dicarboxylic acid moiety have been isolated as one of the representative constituents of this crude drug. This review focuses on the triterpene saponin constituents, especially those with a characteristic dicarboxylic acid moiety, of A. bidentata and A. fauriei. Several groups isolated the saponins and different names were given to one compound in some cases. The names of the compounds are sorted out and the stereochemistry of the dicarboxylic acid moieties are summarized. HPLC analysis of the composition of the saponin constituents and the effect of processing and extraction conditions on the composition are reviewed. Biological activities of the saponin constituents are also summarized.
Collapse
|
4
|
Lee HS, Lee IH, Kang K, Jung M, Yang SG, Kwon TW, Lee DY. Network Pharmacological Dissection of the Mechanisms of Eucommiae Cortex-Achyranthis Radix Combination for Intervertebral Disc Herniation Treatment. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211055024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Eucommiae cortex (EC) and Achyranthis radix (AR) are herbal medicines widely used in combination for the treatment of intervertebral disc herniation (IDH). The mechanisms of action of the herbal combination have not been understood from integrative and comprehensive points of view. By adopting network pharmacological methodology, we aimed to investigate the pharmacological properties of the EC-AR combination as a therapeutic agent for IDH at a systematic molecular level. Using the pharmacokinetic information for the chemical ingredients of the EC-AR combination obtained from the comprehensive herbal drug-associated databases, we determined its 31 bioactive ingredients and 68 IDH-related therapeutic targets. By analyzing their enrichment for biological functions, we observed that the targets of the EC-AR combination were associated with the regulation of angiogenesis; cytokine and chemokine activity; oxidative and inflammatory stress responses; extracellular matrix organization; immune response; and cellular processes such as proliferation, apoptosis, autophagy, differentiation, migration, and activation. Pathway enrichment investigation revealed that the EC-AR combination may target IDH-pathology-associated signaling pathways, such as those of cellular senescence and chemokine, neurotrophin, TNF, MAPK, toll-like receptor, and VEGF signaling, to exhibit its therapeutic effects. Collectively, these data provide mechanistic insights into the pharmacological activity of herbal medicines for the treatment of musculoskeletal diseases such as IDH.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - In-Hee Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Minho Jung
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Seung Gu Yang
- Kyunghee Naro Hospital, 67, Dolma-ro, Bundang-gu, Seongnam 13586, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| |
Collapse
|
5
|
Shi J, Gao X, Zhang A, Qin X, Du G. Characterization of multiple chemical components of GuiLingJi by UHPLC-MS and 1H NMR analysis. J Pharm Anal 2021; 12:460-469. [PMID: 35811626 PMCID: PMC9257439 DOI: 10.1016/j.jpha.2021.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 11/12/2022] Open
Abstract
GuiLingJi (GLJ), a classic traditional Chinese medicine (TCM) formula, is composed of over 20 herbs, according to the Pharmacopeia of the People's Republic of China. Owing to its various activities, GLJ has been used in clinical settings for more than 400 years in China. However, the ambiguous chemical material basis limits the development of studies on the quality control and pharmacological mechanisms of GLJ. Therefore, comprehensive characterization of the multiple chemical components of GLJ is of great significance for the modernization of this formula. Given the great variety of herbs in GLJ, both UHPLC-MS and 1H NMR techniques were employed in this study. In addition, solvent extraction with different polarities was used to eliminate signal interference and the concentration of trace components. A variety of MS analytic methods were also used, including implementation of a self-built compound database, diagnostic ion filtering, mass defect filtering, and Compound Discoverer 3.0 analysis software. Based on the above strategies, a total of 150 compounds were identified, including 5 amino acids, 13 phenolic acids and glycosides, 11 coumarins, 72 flavones, 20 triterpenoid and triterpenoid saponins, 23 fatty acids, and 6 other compounds. Moreover, 13 compounds were identified by 1H NMR spectroscopy. The UHPLC-MS and 1H NMR results supported and complemented each other. This strategy provides a rapid approach to analyzing and identifying the chemical composition of Chinese herbal prescriptions. The current study provides basis for further research on the quality control and pharmacological mechanism of GLJ. The integrated approach of UHPLC-MS and 1H NMR techniques coupled with polarity partition strategy has been used for comprehensively characterizing the multiple chemical components of GLJ. A variety of HRMS analytic methods used included self-built compounds database, diagnostic ions filtering, mass defect filtering, and software analysis for rapid identification the chemical components of GLJ. The 163 compounds including flavones, phenolic acids and glycosides, triterpenoid and triterpenoid saponins, coumarin, fatty acids, amino acids, organic acids, organic bases and sugars were rapidly identified, and to clarify the chemical material basis of GLJ. Established an analysis strategy which could be applied to other TCM formula for comprehensive characterization and identification of chemical components.
Collapse
|
6
|
Guo J, Shen S, Zhang X, Wang G, Lu Y, Liu X, Wang S, Li Q, Cong Y, Shi B. Chemical compounds with a neuroprotective effect from the seeds of Celosia argentea L. Food Funct 2021; 12:83-96. [PMID: 33191416 DOI: 10.1039/d0fo02033h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oxidative stress plays a central role in the common pathophysiology of neurodegenerative diseases such as Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease. Antioxidant therapy has been suggested for the prevention and treatment of neurodegenerative diseases. Compounds derived from natural sources may offer the potential for new treatment options. Semen Celosiae is a traditional Chinese edible herbal medicine with a long history in China and exhibits wide-reaching biological activities such as hepatoprotective, anti-tumor, anti-diarrheal, anti-diabetic, anti-oxidant, etc. In this study, nine saponins and two phenylacetonitrile glycosides were isolated from Semen Celosiae and their structures were identified using ESI-MS and NMR techniques. Among them, compounds 1 and 2 have not been previously reported. The total concentrations of the five triterpenoid saponins and the two phenylacetonitrile glycosides were 3.348 mg g-1 and 0.187 mg g-1, respectively, suggesting that Semen Celosiae is a novel viable source of the two kinds of compounds. These compounds were observed to significantly attenuate t-BHP-induced neuronal damage by effectively enhancing cell viability and decreasing reactive oxygen species generation and cell apoptosis rate in NSC-34 cells. Furthermore, compounds 1 and 7 reduced the ratios of cleaved caspase-3: caspase-3 and cleaved caspase-7: caspase-7 and the level of cytochrome C, while they increased the levels of SOD1 and Beclin 1. These findings suggest that compounds 1-11 are potent inhibitors of neuron injury elicited by t-BHP, possibly via inhibition of oxidative stress and apoptosis, and activation of autophagy; therefore they may be valuable leads for future therapeutic development.
Collapse
Affiliation(s)
- Jinggong Guo
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Shan Shen
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, China. and Ludong Hospital, Yantai, China
| | - Xiao Zhang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Guoying Wang
- Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Yiqing Lu
- Centre for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, Australia
| | - Xiping Liu
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, China.
| | - Shuyun Wang
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, China.
| | - Qin Li
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, China.
| | - Yue Cong
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, China.
| | - Bingyang Shi
- Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, Australia. and International Joint Center for Biomedical Innovation, College of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
7
|
Wei L, Daniyal M, Qing-Ling X, Yang L, Qian X, Bin L, Cai-Yun P, Wei W. Triterpenoid Saponins from Tu Jia Ethnomedicine Bai San Qi and Their Cytotoxicity on Hep G2 and BGC-823 Cell Lines. DIGITAL CHINESE MEDICINE 2019. [DOI: 10.1016/j.dcmed.2019.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
8
|
UHPLC-MS/MS Quantification Combined with Chemometrics for Comparative Analysis of Different Batches of Raw, Wine-Processed, and Salt-Processed Radix Achyranthis Bidentatae. Molecules 2018; 23:molecules23040758. [PMID: 29587431 PMCID: PMC6017346 DOI: 10.3390/molecules23040758] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/05/2018] [Accepted: 03/22/2018] [Indexed: 11/23/2022] Open
Abstract
An accurate and reliable method using ultra-high performance liquid chromatography combined with triple quadrupole tandem mass spectrometry (UHPLC–MS/MS) was established for simultaneous quantification of five major bioactive analytes in raw, wine-processed, and salt-processed Radix Achyranthis bidentatae (RAB). The results showed that this method exhibited desirable sensitivity, precision, stability, and repeatability. The overall intra-day and inter-day variations (RSD) were in the range of 1.57–2.46 and 1.51–3.00%, respectively. The overall recoveries were 98.58–101.48% with a relative standard deviation (RSD) of 0.01–1.86%. In addition, the developed approach was applied to 21 batches of raw, wine-processed, and salt-processed samples of RAB. Hierarchical clustering analysis (HCA), principal component analysis (PCA), heat map, and boxplot analysis were performed to evaluate the quality of raw, wine-processed, and salt-processed RAB collected from different regions. The chemometrics combined with the quantitative analysis based on UHPLC–MS/MS results indicated that the content of five analytes increased significantly in processed RAB compared to raw RAB.
Collapse
|
9
|
He X, Wang X, Fang J, Chang Y, Ning N, Guo H, Huang L, Huang X. The genus Achyranthes: A review on traditional uses, phytochemistry, and pharmacological activities. JOURNAL OF ETHNOPHARMACOLOGY 2017; 203:260-278. [PMID: 28347832 DOI: 10.1016/j.jep.2017.03.035] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Achyranthes L. (Amaranthaceae), also known as Chaff Flower and Niuxi/, mainly includes two famous medicinal species namely A. bidentata and A. aspera. A. bidentata has been widely used as blood-activating and stasis-resolving medicine for the treatment of various diseases including amenorrhea, dysmenorrhea, lumbago, gonalgia, paraplegia, edema, stranguria, headache, dizziness, odontalgia, oral ulcer, hematemesis, and epistaxis. A. aspera has been widely used to treat various diseases, including gynecological disorder, asthma, ophthalmia, odontalgia, haemorrhoids, and abdominal tumor, and has been applied to difficult labour, wound healing, insect and snake bites. AIM OF THIS REVIEW This review aims to provide systematically reorganized information on distributions, botanical characteristics, ethnopharmacology, chemical constituents, qualitative and quantitative analysis, pharmacological activities, and toxicity of Achyranthes species to support their therapeutic potential. MATERIALS AND METHODS The relevant information on Achyranthes species was gathered from worldwide accepted scientific databases via electronic search (Google Scholar, Web of Science, ScienceDirect, ACS Publications, PubMed, Wiley Online Library, SciFinder, CNKI). Information was also obtained from International Plant Names Index, Chinese Pharmacopoeia, Chinese herbal classic books, PhD and MSc dissertations, etc. RESULTS A comprehensive analysis of literatures obtained through the above- mentioned sources confirms that the ethnomedicinal uses of Achyranthes species are mainly recorded in China, India, Korea, Pakistan, Ethiopia, Kenya, Sri Lanka, Bangladesh, Philippines, etc. Phytochemical investigations revealed that the major bioactive substances of Achyranthes plants are polysaccharides, polypeptides, triterpenoid saponins, and ketosteroids. Achyranthes plants have been shown to not only act on immune system, nervous system, bone metabolism, and reproduction, but also possess a wide range of biological activities, including blood-activating, anti-tumor, anti-inflammation, anti-arthritis, anti-oxidation, anti-aging, wound healing, etc. Toxicity studies indicated that A. bidentata and A. aspera seem non-toxic at the common therapeutic doses. CONCLUSIONS A. bidentata and A. aspera are very promising to be fully utilized in the development of nutraceutical and pharmaceutical products. There are, however, needs for further in-depth studies to confirm some ethnomedicinal uses of Achyranthes plants and to elucidate the scientific connotation of the widely documented property of conducting drug downward of A. bidentata. In addition, other widespread Achyranthes species like A. japonica and A. rubrofusca ought to be studied. Likewise, systematic comparative studies of the chemical constituents of medicinal Achyranthes plants resources with the same local name are also needed. Furthermore, not only should the investigations on the structure-activity relationship of the main bioactive compounds triterpenoid saponins and ketosteroids be carried out, but the pathways of absorption, distribution, metabolism, and excretion ought to be clarified. Last but not least, there is also a need to evaluate the long-term chronic toxicity and acute toxicity in vivo of the main bioactive compounds.
Collapse
Affiliation(s)
- Xirui He
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, PR China
| | - Xiaoxiao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, PR China
| | - Jiacheng Fang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, PR China
| | - Yu Chang
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, PR China
| | - Ning Ning
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, PR China
| | - Hao Guo
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, PR China
| | - Linhong Huang
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, PR China.
| | - Xiaoqiang Huang
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, PR China
| |
Collapse
|
10
|
Li J, Wang C, Han X, Qi W, Chen Y, Wang T, Zheng Y, Zhao X. Transcriptome Analysis to Identify the Putative Biosynthesis and Transport Genes Associated with the Medicinal Components of Achyranthes bidentata Bl. FRONTIERS IN PLANT SCIENCE 2016; 7:1860. [PMID: 28018396 PMCID: PMC5149546 DOI: 10.3389/fpls.2016.01860] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/25/2016] [Indexed: 05/27/2023]
Abstract
Achyranthes bidentata is a popular perennial medicine herb used for 1000s of years in China to treat various diseases. Although this herb has multiple pharmaceutical purposes in China, no transcriptomic information has been reported for this species. In addition, the understanding of several key pathways and enzymes involved in the biosynthesis of oleanolic acid and ecdysterone, two pharmacologically active classes of metabolites and major chemical constituents of A. bidentata root extracts, is limited. The aim of the present study was to characterize the transcriptome profile of the roots and leaves of A. bidentata to uncover the biosynthetic and transport mechanisms of the active components. In this study, we identified 100,987 transcripts, with an average length of 1146.8 base pairs. A total of 31,634 (31.33%) unigenes were annotated, and 12,762 unigenes were mapped to 303 pathways according to the Kyoto Encyclopedia of Genes and Genomes pathway database. Moreover, we identified a total of 260 oleanolic acid and ecdysterone genes encoding biosynthetic enzymes. Furthermore, the key enzymes involved in the oleanolic acid and ecdysterone synthesis pathways were analyzed using quantitative real-time polymerase chain reaction, revealing that the roots expressed these enzymes to a greater extent than the leaves. In addition, we identified 85 ATP-binding cassette transporters, some of which might be involved in the translocation of secondary metabolites.
Collapse
Affiliation(s)
- Jinting Li
- College of Life Sciences, Henan Normal UniversityXinxiang, China
- Engineering Laboratory of Biotechnology for Green Medicinal Plant of Henan ProvinceXinxiang, China
| | - Can Wang
- College of Life Sciences, Henan Normal UniversityXinxiang, China
| | - Xueping Han
- College of Life Sciences, Henan Normal UniversityXinxiang, China
| | - Wanzhen Qi
- College of Life Sciences, Henan Normal UniversityXinxiang, China
| | - Yanqiong Chen
- College of Life Sciences, Henan Normal UniversityXinxiang, China
| | - Taixia Wang
- College of Life Sciences, Henan Normal UniversityXinxiang, China
| | - Yi Zheng
- Boyce Thompson Institute, IthacaNY, USA
| | - Xiting Zhao
- College of Life Sciences, Henan Normal UniversityXinxiang, China
- Engineering Laboratory of Biotechnology for Green Medicinal Plant of Henan ProvinceXinxiang, China
| |
Collapse
|