1
|
Yifan X, Jingfeng H, Huichuan Z, Junqian L, Zhenzhou J, Lixin S, Xin H, Luyong Z, Tao W. The paradox of Picroside II: As a natural antioxidant, but may instead futher aggravate liver injury by exacerbating mitochondrial oxidative stress. Toxicol Res (Camb) 2024; 13:tfae073. [PMID: 38765240 PMCID: PMC11100354 DOI: 10.1093/toxres/tfae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/07/2024] [Accepted: 05/08/2024] [Indexed: 05/21/2024] Open
Abstract
Background Picroside II (PII), an iridoid glycoside extracted from the rhizomes and stems of the genus Picroside, exhibits pronounced hepatoprotective properties. Pre-administration of PII protects against acute liver injury caused by D-galactosamine (D-Gal), carbon tetrachloride (CCl4), and acetaminophen (APAP). This study aimed to elucidate the ramifications of PII administration subsequent to the initiation of acute hepatic injury. Methods Exploring the role of PII treatment in APAP-treated cell and rat models and in D-Gal and CCl4-treated rat models. Results In rats, APAP treatment increased serum aspartate transaminase, alanine transaminase, and alkaline phosphatase levels and decreased glutathione activity and the fluidity of the liver mitochondrial membrane. In L-02 cells, APAP exposure resulted in a decrement in membrane potential, an augmentation in the liberation of reactive oxygen species, and an acceleration of apoptotic processes. Moreover, PII pre-administration protected against D-Gal-induced acute hepatic injury and CCl4-induced chronic hepatic injury in rodent models, whereas PII administration post-injury aggravated CCl4-induced chronic hepatic injury. Conclusions Our results suggest that the effects of PII depend on the hepatic physiological or pathological state at the time of intervention. While PII possesses the potential to avert drug-induced acute hepatic injury through the mitigation of oxidative stress, its administration post-injury may exacerbate the hepatic damage, underscoring the critical importance of timing in therapeutic interventions.
Collapse
Affiliation(s)
- Xu Yifan
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Gulou District, Nanjing, Jiangsu, 210009, China
| | - Huang Jingfeng
- Pharmacology and Toxicology Laboratory, Grand Theravac Life Science (Nanjing) Co., Ltd, 699 Xuanwu Avenue, Xuanwu District, Nanjing, Jiangsu, 210018, China
| | - Zhuang Huichuan
- Department of Pharmacy, Qinhuai Branch of General Hospital of Eastern Theater Command of Chinese PLA, 34, Yang Gongjing, Distrik Qinhuai, Nanjing, Jiangsu, 210001, China
| | - Lin Junqian
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Gulou District, Nanjing, Jiangsu, 210009, China
| | - Jiang Zhenzhou
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Gulou District, Nanjing, Jiangsu, 210009, China
| | - Sun Lixin
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Gulou District, Nanjing, Jiangsu, 210009, China
| | - Huang Xin
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Gulou District, Nanjing, Jiangsu, 210009, China
| | - Zhang Luyong
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Gulou District, Nanjing, Jiangsu, 210009, China
- Center for Drug Research and Development, Guangdong Pharmaceutical University, 280 Waihuan East Road, Guangzhou, Guangdong, 510006, China
| | - Wang Tao
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Gulou District, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
3
|
Pingili R, Pawar AK, Challa SR. Quercetin reduced the formation of
N
‐acetyl‐
p
‐benzoquinoneimine, a toxic metabolite of paracetamol in rats and isolated rat hepatocytes. Phytother Res 2019; 33:1770-1783. [DOI: 10.1002/ptr.6365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 02/24/2019] [Accepted: 03/16/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Ravindrababu Pingili
- Research and Development, Department of PharmacyJawaharlal Nehru Technological University Kakinada India
- Department of PharmacologyKVSR Siddhartha College of Pharmaceutical Sciences Vijayawada India
| | - A. Krishnamanjari Pawar
- Department of Pharmaceutical Analysis, University College of Pharmaceutical SciencesAndhra University Visakhapatnam India
| | - Siva Reddy Challa
- Department of PharmacologyKVSR Siddhartha College of Pharmaceutical Sciences Vijayawada India
| |
Collapse
|
4
|
Pingili RB, Pawar AK, Challa SR. Effect of chrysin on the formation of N-acetyl-p-benzoquinoneimine, a toxic metabolite of paracetamol in rats and isolated rat hepatocytes. Chem Biol Interact 2019; 302:123-134. [PMID: 30794797 DOI: 10.1016/j.cbi.2019.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/18/2022]
Abstract
Paracetamol (N-acetyl-para amino phenol) is the most commonly used analgesic and antipyretic around the world. Its causes hepatotoxicity and nephrotoxicity at overdose or even at therapeutic doses. It is primarily metabolized by glucuronidation and sulfate conjugation. It is also metabolized by cytochrome-P450 system (CYP2E1, CYP1A2 and CYP 3A4), leading to the formation of N-acetyl-p-benzoquinoneimine (NAPQI). The present study was planned to investigate the influence of chrysin (known CYP2E1 and CYP3A4 inhibitor) on the bioactivation of paracetamol to NAPQI using rat liver microsomes in vitro and rats in vivo. Paracetamol (80 mg/kg) was administered orally without or with silymarin (100 mg/kg), a known CYP2E1 inhibitor and chrysin (100 and 200 mg/kg) to rats for 15 consecutive days. The area under the plasma concentration-time curve (AUC0-∞) and the peak plasma concentration (Cmax) of paracetamol were dose-dependently increased with chrysin (100 and 200 mg/kg) compared to paracetamol control group. On the other hand, the AUC0-∞ and Cmax of NAPQI were decreased significantly with chrysin (100 and 200 mg/kg). The elevated liver and kidney function markers were significantly reduced by chrysin and silymarin compared to paracetamol control group (P < 0.01). Histopathological studies of liver and kidney also well correlated with liver and kidney function tests. Chrysin also reduced the formation of NAPQI in the incubation samples of rat hepatocytes. The present study (both in vivo and in vitro) results revealed that chrysin might be inhibited the CYP2E1, CYP1A2 and CYP3A4-mediated metabolism of paracetamol; thereby decreased the formation of NAPQI and protected the liver and kidney.
Collapse
Affiliation(s)
- Ravindra Babu Pingili
- Research and Development, Department of Pharmacy, Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India; Department of Pharmacology, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, Andhra Pradesh, India.
| | - A Krishnamanjari Pawar
- Department of Pharmaceutical Analysis, University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, India
| | - Siva R Challa
- Department of Pharmacology, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, Andhra Pradesh, India.
| |
Collapse
|
6
|
Mulholland DA, Schwikkard SL, Crouch NR. The chemistry and biological activity of the Hyacinthaceae. Nat Prod Rep 2013; 30:1165-210. [PMID: 23892453 DOI: 10.1039/c3np70008a] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Hyacinthaceae (sensu APGII), with approximately 900 species in about 70 genera, can be divided into three main subfamilies, the Hyacinthoideae, the Urgineoideae and the Ornithogaloideae, with a small fourth subfamily the Oziroëoideae, restricted to South America. The plants included in this family have long been used in traditional medicine for a wide range of medicinal applications. This, together with some significant toxicity to livestock has led to the chemical composition of many of the species being investigated. The compounds found are, for the most part, subfamily-restricted, with homoisoflavanones and spirocyclic nortriterpenoids characterising the Hyacinthoideae, bufadienolides characterising the Urgineoideae, and cardenolides and steroidal glycosides characterising the Ornithogaloideae. The phytochemical profiles of 38 genera of the Hyacinthaceae will be discussed as well as any biological activity associated with both crude extracts and compounds isolated. The Hyacinthaceae of southern Africa were last reviewed in 2000 (T. S. Pohl, N. R. Crouch and D. A. Mulholland, Curr. Org. Chem., 2000, 4, 1287-1324; ref. 1); the current contribution considers the family at a global level.
Collapse
Affiliation(s)
- Dulcie A Mulholland
- Natural Products Research Group, Department of Chemistry, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | | | | |
Collapse
|
7
|
Jaeschke H, Williams CD, McGill MR, Xie Y, Ramachandran A. Models of drug-induced liver injury for evaluation of phytotherapeutics and other natural products. Food Chem Toxicol 2013; 55:279-89. [PMID: 23353004 DOI: 10.1016/j.fct.2012.12.063] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 01/08/2023]
Abstract
Extracts from medicinal plants, many of which have been used for centuries, are increasingly tested in models of hepatotoxicity. One of the most popular models to evaluate the hepatoprotective potential of natural products is acetaminophen (APAP)-induced liver injury, although other hepatotoxicity models such as carbon tetrachloride, thioacetamide, ethanol and endotoxin are occasionally used. APAP overdose is a clinically relevant model of drug-induced liver injury. Critical mechanisms and signaling pathways, which trigger necrotic cell death and sterile inflammation, are discussed. Although there is increasing understanding of the pathophysiology of APAP-induced liver injury, the mechanism is complex and prone to misinterpretation, especially when unknown chemicals such as plant extracts are tested. This review discusses the fundamental aspects that need to be considered when using this model, such as selection of the animal species or in vitro system, timing and dose-responses of signaling events, metabolic activation and protein adduct formation, the role of lipid peroxidation and apoptotic versus necrotic cell death, and the impact of the ensuing sterile inflammatory response. The goal is to enable researchers to select the appropriate model and experimental conditions for testing of natural products that will yield clinically relevant results and allow valid interpretations of the pharmacological mechanisms.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | |
Collapse
|