Chen Q, Deng W, He J, Cheng L, Ren PG, Xu Y. Enhancing Drug Utilization Efficiency
via Dish-Structured Triboelectric Nanogenerator.
Front Bioeng Biotechnol 2022;
10:950146. [PMID:
35875494 PMCID:
PMC9298755 DOI:
10.3389/fbioe.2022.950146]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the finding of severe side effects and low therapeutic efficacy with cancer chemotherapy, there still remains a great challenge to benefit patients with curative effect. In this work, we designed a self-powered drug delivery system comprising a current source derived from the disk TENG (D-TENG) and a pair of Au electrodes. Thus, cells seeded within the electrode gap could be stimulated by the current followed by D-TENG`s work. Under the rotation frequency of about 7.4 Hz, the peak output current and voltage of the D-TENG reached 3.7 μA and 135 V and achieved an average of 2.8 μA of output current. Furthermore, the D-TENG also showed its good stability to output steady current in a long-term condition. When applying the electric stimulation by this self-powered drug delivery system, a chemotherapy drug, doxorubicin (DOX), had significant uptake by cancer cells. Therefore, utilizing a novel TENG device as a part of chemotherapy would provide a new opportunity in future disease treatment.
Collapse