1
|
Paixão L, Ramos RB, Lavarda A, Morsh DM, Spritzer PM. Animal models of hyperandrogenism and ovarian morphology changes as features of polycystic ovary syndrome: a systematic review. Reprod Biol Endocrinol 2017; 15:12. [PMID: 28183310 PMCID: PMC5301391 DOI: 10.1186/s12958-017-0231-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/08/2017] [Indexed: 12/26/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder, affecting 9-18% of women in reproductive age that causes hyperandrogenism and infertility due to dysfunctional follicular maturation and anovulation. The etiology of PCOS is still poorly known, and information from experimental animal models may help improve current understanding of the mechanisms of PCOS initiation and development. Therefore, we conducted a systematic review of currently available methods for simulation of PCOS in experimental models, focusing on two main endocrine traits: ovarian morphology changes and circulating levels of sex hormones and gonadotropins.We searched the MEDLINE database for articles in English or Spanish published until October 2016. Of 933 studies identified, 39 were included in the systematic review. One study compared interventions with androgens versus estrogens, 18 used androgen-induced stimulation, 9 used estrogens or drugs with estrogen action, including endocrine disruptors, to induce PCOS-like models, and 12 used miscellaneous interventions. Broad differences were found among the studies concerning hormonal interventions, animal species, and developmental stage at the time of the experiments, and most models resulted in ovarian morphology changes, mainly increases in the number of cystic and antral follicles and decreases in the corpus luteum. Hyperandrogenism was produced by using androgens and other drugs as the stimulatory agent. However, studies using drugs with estrogenic effect did not observe changes in circulating androgens.In conclusion, medium- or long-term testosterone administration in the pre- and postnatal periods performed best for induction of a PCOS-like phenotype, in rhesus macaque and rat models respectively. In rats, postnatal exposure to androgens results in reprogramming of the hypothalamic-pituitary-ovarian-axis. Thus, comparisons between different intervention models may be useful to define the timing of reproductive PCOS phenotypes in experimental animal models.
Collapse
Affiliation(s)
- Larissa Paixão
- 0000 0001 0125 3761grid.414449.8Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035 003 Porto Alegre, RS Brazil
- 0000 0001 2200 7498grid.8532.cDepartment of Physiology, Laboratory of Molecular Endocrinology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ramon B. Ramos
- 0000 0001 0125 3761grid.414449.8Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035 003 Porto Alegre, RS Brazil
| | - Anita Lavarda
- 0000 0001 0125 3761grid.414449.8Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035 003 Porto Alegre, RS Brazil
| | - Debora M. Morsh
- 0000 0001 0125 3761grid.414449.8Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035 003 Porto Alegre, RS Brazil
| | - Poli Mara Spritzer
- 0000 0001 0125 3761grid.414449.8Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035 003 Porto Alegre, RS Brazil
- 0000 0001 2200 7498grid.8532.cDepartment of Physiology, Laboratory of Molecular Endocrinology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
2
|
Zhang XL, Pang W, Hu XT, Li JL, Yao YG, Zheng YT. Experimental primates and non-human primate (NHP) models of human diseases in China: current status and progress. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2014; 35:447-64. [PMID: 25465081 PMCID: PMC4790274 DOI: 10.13918/j.issn.2095-8137.2014.6.447] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/15/2014] [Indexed: 12/16/2022]
Abstract
Non-human primates (NHPs) are phylogenetically close to humans, with many similarities in terms of physiology, anatomy, immunology, as well as neurology, all of which make them excellent experimental models for biomedical research. Compared with developed countries in America and Europe, China has relatively rich primate resources and has continually aimed to develop NHPs resources. Currently, China is a leading producer and a major supplier of NHPs on the international market. However, there are some deficiencies in feeding and management that have hampered China's growth in NHP research and materials. Nonetheless, China has recently established a number of primate animal models for human diseases and achieved marked scientific progress on infectious diseases, cardiovascular diseases, endocrine diseases, reproductive diseases, neurological diseases, and ophthalmic diseases, etc. Advances in these fields via NHP models will undoubtedly further promote the development of China's life sciences and pharmaceutical industry, and enhance China's position as a leader in NHP research. This review covers the current status of NHPs in China and other areas, highlighting the latest developments in disease models using NHPs, as well as outlining basic problems and proposing effective countermeasures to better utilize NHP resources and further foster NHP research in China.
Collapse
Affiliation(s)
- Xiao-Liang Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China;Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming Yunnan 650500, China
| | - Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Xin-Tian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China;Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Jia-Li Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China;Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China;Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China;Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China;Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming Yunnan 650500, China.
| |
Collapse
|