1
|
Fan C, Ouyang Y, Yuan X, Wang J. An enhancer trap zebrafish line for lateral line development and regulation of six2b expression. Gene Expr Patterns 2022; 43:119231. [PMID: 34995793 DOI: 10.1016/j.gep.2022.119231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 11/30/2022]
Abstract
Zebrafish lateral line system which is derived from neurogenic placodes has become a popular model for developmental biology since its formation involves cell migration, pattern formation, organogenesis, and hair cell regeneration. Transgenic lines play a crucial role in lateral line system study. Here, we identified an enhancer trap transgenic zebrafish line Et(gata2a:EGFP)189b (ET189b for short), which expressed enhanced green fluorescent protein (EGFP) in the pituitary, otic, and lateral line placodes and their derivatives. Especially, in neuromast, the accessory cells rather than hair cells were labeled by EGFP. Furthermore, we found the Tol2 transposon construct is integrated at the proximal upstream region of six2b gene locus. And EGFP expression of ET189b closely reflects the expression of endogenous six2b during development and after dkk1b over-expression. Taken together, our results indicated that ET189b is an ideal line for research on lateral line development and regulation of six2b expression.
Collapse
Affiliation(s)
- Chunxin Fan
- Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China.
| | - Yajing Ouyang
- Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China
| | - Xiaoyi Yuan
- Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China
| | - Jian Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China.
| |
Collapse
|
2
|
Qiu J, Fan X, Wang Y, Jin H, Song Y, Han Y, Huang S, Meng Y, Tang F, Meng A. Embryonic hematopoiesis in vertebrate somites gives rise to definitive hematopoietic stem cells. J Mol Cell Biol 2016; 8:288-301. [PMID: 27252540 PMCID: PMC4991667 DOI: 10.1093/jmcb/mjw024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 01/29/2023] Open
Abstract
Hematopoietic stem cells (HSCs) replenish all types of blood cells. It is debating whether HSCs in adults solely originate from the aorta-gonad-mesonephros (AGM) region, more specifically, the dorsal aorta, during embryogenesis. Here, we report that somite hematopoiesis, a previously unwitnessed hematopoiesis, can generate definitive HSCs (dHSCs) in zebrafish. By transgenic lineage tracing, we found that a subset of cells within the forming somites emigrate ventromedially and mix with lateral plate mesoderm-derived primitive hematopoietic cells before the blood circulation starts. These somite-derived hematopoietic precursors and stem cells (sHPSCs) subsequently enter the circulation and colonize the kidney of larvae and adults. RNA-seq analysis reveals that sHPSCs express hematopoietic genes with sustained expression of many muscle/skeletal genes. Embryonic sHPSCs transplanted into wild-type embryos expand during growth and survive for life time with differentiation into various hematopoietic lineages, indicating self-renewal and multipotency features. Therefore, the embryonic origin of dHSCs in adults is not restricted to the AGM.
Collapse
Affiliation(s)
- Juhui Qiu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoying Fan
- Biodynamic Optical Imaging Center, College of Life Sciences, Department of Obstetrics and Gynecology, Third Hospital, and Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing 100871, China Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China Center for Molecular and Translational Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Yixia Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongbin Jin
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yixiao Song
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yang Han
- College of Biological Sciences, China Agricultural University, Beijing 100083, China
| | - Shenghong Huang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yaping Meng
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fuchou Tang
- Biodynamic Optical Imaging Center, College of Life Sciences, Department of Obstetrics and Gynecology, Third Hospital, and Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing 100871, China Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China Center for Molecular and Translational Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Anming Meng
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Huang P, Xu L, Liang W, Tam CI, Zhang Y, Qi F, Zhu Z, Lin S, Zhang B. Genomic deletion induced by Tol2 transposon excision in zebrafish. Nucleic Acids Res 2012; 41:e36. [PMID: 23143102 PMCID: PMC3553969 DOI: 10.1093/nar/gks1035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Genomic deletions induced by imprecise excision of transposons have been used to disrupt gene functions in Drosophila. To determine the excision properties of Tol2, a popular transposon in zebrafish, we took advantage of two transgenic zebrafish lines Et(gata2a:EGFP)pku684 and Et(gata2a:EGFP)pku760, and mobilized the transposon by injecting transposase mRNA into homozygous transgenic embryos. Footprint analysis showed that the Tol2 transposons were excised in either a precise or an imprecise manner. Furthermore, we identified 1093-bp and 1253-bp genomic deletions in Et(gata2a:EGFP)pku684 founder embryos flanking the 5′ end of the original Tol2 insertion site, and a 1340-bp deletion in the Et(gata2a:EGFP)pku760 founder embryos flanking the 3′ end of the insertion site. The mosaic Et(gata2a:EGFP)pku684 embryos were raised to adulthood and screened for germline transmission of Tol2 excision in their F1 progeny. On average, ∼42% of the F1 embryos displayed loss or altered EGFP patterns, demonstrating that this transposon could be efficiently excised from the zebrafish genome in the germline. Furthermore, from 59 founders, we identified one that transmitted the 1093-bp genomic deletion to its offspring. These results suggest that imprecise Tol2 transposon excision can be used as an alternative strategy to achieve gene targeting in zebrafish.
Collapse
Affiliation(s)
- Peng Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Huang P, Zhu Z, Lin S, Zhang B. Reverse genetic approaches in zebrafish. J Genet Genomics 2012; 39:421-33. [PMID: 23021542 DOI: 10.1016/j.jgg.2012.07.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 07/03/2012] [Accepted: 07/07/2012] [Indexed: 12/14/2022]
Abstract
Zebrafish (Danio rerio) is a well-established vertebrate animal model. A comprehensive collection of reverse genetics tools has been developed for studying gene function in this useful organism. Morpholino is the most widely used reagent to knock down target gene expression post-transcriptionally. For a long time, targeted genome modification has been heavily relied on large-scale traditional forward genetic screens, such as ENU (N-ethyl-N-nitrosourea) mutagenesis derived TILLING (Targeting Induced Local Lesions IN Genomes) strategy and pseudo-typed retrovirus mediated insertional mutagenesis. Recently, engineered endonucleases, including ZFNs (zinc finger nucleases) and TALENs (transcription activator-like effector nucleases), provide new and efficient strategies to directly generate site-specific indel mutations by inducing double strand breaks in target genes. Here we summarize the major reverse genetic approaches for loss-of-function studies used and emerging in zebrafish, including strategies based on genome-wide mutagenesis and methods for site-specific gene targeting. Future directions and expectations will also be discussed.
Collapse
Affiliation(s)
- Peng Huang
- Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | | | | | | |
Collapse
|