1
|
Sun M, Lu Z, Cai P, Zheng L, Zhao J. Salidroside enhances proliferation and maintains phenotype of articular chondrocytes for autologous chondrocyte implantation (ACI) via TGF-β/Smad3 Signal. Biomed Pharmacother 2019; 122:109388. [PMID: 31919041 DOI: 10.1016/j.biopha.2019.109388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/11/2019] [Accepted: 08/22/2019] [Indexed: 01/27/2023] Open
Abstract
Autologous chondrocyte implantation (ACI) is commonly used for the treatment of cartilage defects. Since the cell number for transplantation is limited, the expand culture of chondrocytes in vitro is needed. However, the phenotype of chondrocytes is easy to lose in monolayer cultured in vitro. Traditional growth factors such as transformation growth factor -β1 (TGF-β1) have been used for promoting the proliferation and maintained the phenotype of chondrocytes, but the high cost and functional heterogeneity limit their clinical application. It is of significant to develop substitutes that can accelerate proliferation and prevent dedifferentiation of chondrocytes for further study. In our present study, the effect of salidroside on proliferation and phenotype maintenance of chondrocytes and cartilage repair was investigated by performing the cell viability, morphology, glycosaminoglycan (GAG) synthesis, cartilage relative genes expression, macroscopic and histological analyzsis. The TGF-β/smad3 signal which may involve in the protective effect of salidroside on chondrocytes was also detected by ELISA and qRT-PCR assays. The results indicated that salidroside could promote chondrocytes proliferation and enhance synthesis of cartilage extracellular matrix (ECM). Expression of collagen type I was significantly down-regulated which suggesting that salidroside could prevent chondrocytes from dedifferentiation. The in vivo experiments for cartilage repair also indicated that in the treatment of salidroside, chondrocytes used for ACI significantly accelerated the hyaline cartilage repair. While in the absence of salidroside, the repaired cartilage is mainly the fibrous cartilage. Additional experiments demonstrated that salidroside promotes the proliferation and maintain the phenotype of chondrocytes by activate the TGF-β/smad3 signal. Salidroside may be a potential agent for ACI to promote the proliferation and maintain the phenotype of chondrocytes expansion in vitro.
Collapse
Affiliation(s)
- Miao Sun
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China; Department of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Zhenhui Lu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Peian Cai
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and Hand Surgery. The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China; Department of Pharmacy, Guangxi Medical University, Nanning, 530021, China.
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and Hand Surgery. The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
2
|
Murine and Chinese cobra venom‑derived nerve growth factor stimulate chondrogenic differentiation of BMSCs in vitro: A comparative study. Mol Med Rep 2018; 18:3341-3349. [PMID: 30066875 PMCID: PMC6102669 DOI: 10.3892/mmr.2018.9307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 06/22/2018] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy has been commonly used in cartilage reconstruction, due to its self-renewing ability and multi-differentiation potential. Nerve growth factor (NGF) from cobra venom has been reported to regulate chondrogenesis of bone-derived MSCs (BMSCs) and chondrocyte metabolism. Therefore, the present study aimed to determine whether other sources of NGF behave in the same manner as NGF from natural venom. The present study compared the effects of NGF from two sources, the commercially purchased recombinant murine β-NGF (mNGF) and cobra venom-derived NGF (cvNGF), on chondrogenesis of BMSCs by performing hematoxylin and eosin and fluorescein diacetate/propidium iodide staining, DNA and glycosaminoglycan quantization and reverse transcription-quantitative polymerase chain reaction to investigate cell morphology, viability, proliferation, glycosaminoglycan synthesis and cartilage-specific gene expression. The results demonstrated that cvNGF significantly accelerated cell proliferation and upregulated the expression of cartilage-specific genes, including aggrecan, SRY-box 9 and collagen type II α1 chain. Conversely, cvNGF reduced the expression levels of collagen type I α1 chain (a fibrocartilage marker), runt-related transcription factor 2 and enolase 2 compared with in the mNGF and control groups. In addition, Chinese cobra venom, which is the main resource of cvNGF, is abundant and inexpensive, thus greatly decreasing the cost. In conclusion, the present study demonstrated that cvNGF may be considered a potential growth factor for inducing chondrogenic differentiation of BMSCs.
Collapse
|
3
|
Tan J, Lu Z, Miao Z, Lei D, Zheng L, Zhao J. Effect of NGF From Venom of Chinese Cobra (Naja Atra)on Chondrocytes Proliferation and Metabolism In Vitro. J Cell Biochem 2017; 118:4308-4316. [DOI: 10.1002/jcb.26083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/19/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Jiachang Tan
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ RegenerationThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
- Guangxi Collaborative Innovation Center for BiomedicineThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
- Guangxi Key Laboratory of Regenerative MedicineThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
- The Medical and Scientific Research CenterGuangxi Medical UniversityNanning530021China
| | - Zhenhui Lu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ RegenerationThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
- Guangxi Collaborative Innovation Center for BiomedicineThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
- Guangxi Key Laboratory of Regenerative MedicineThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
| | - Zhikang Miao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ RegenerationThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
- Guangxi Collaborative Innovation Center for BiomedicineThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
- Guangxi Key Laboratory of Regenerative MedicineThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
| | - Danqing Lei
- Department of Orthopaedics Trauma and Hand SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ RegenerationThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
- Guangxi Collaborative Innovation Center for BiomedicineThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
- Guangxi Key Laboratory of Regenerative MedicineThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ RegenerationThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
- Guangxi Collaborative Innovation Center for BiomedicineThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
- Guangxi Key Laboratory of Regenerative MedicineThe First Affiliated Hospital of Guangxi Medical UniversityNanning530021China
- The Medical and Scientific Research CenterGuangxi Medical UniversityNanning530021China
| |
Collapse
|
4
|
Yao X, Huang H, Li Z, Liu X, Fan W, Wang X, Sun X, Zhu J, Zhou H, Wei H. Taurine Promotes the Cartilaginous Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Vitro. Neurochem Res 2017; 42:2344-2353. [PMID: 28397071 DOI: 10.1007/s11064-017-2252-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/16/2017] [Accepted: 03/29/2017] [Indexed: 01/07/2023]
Abstract
Taurine has been reported to influence osteogenic differentiation, but the role of taurine on cartilaginous differentiation using human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) remains unclear. In this study, we investigated the effect of taurine (0, 1, 5 and 10 mM) on the proliferation and chondrogenesis of hUC-MSCs by analyzing cell proliferation, accumulation of glycosaminoglycans and expression of cartilage specific mRNA. The results show though taurine did not affected the proliferation of hUC-MSCs, 5 mM of taurine is sufficient to enhanced the accumulation of glycosaminoglycans and up-regulate cartilage specific mRNA expression, namely collagen type II, aggrecan and SOX9. Taurine also inhibits chondrocyte dedifferentiation by reducing expression of collagen type I mRNA. Taken together, our study reveals that taurine promotes and maintains the chondrogenesis of hUC-MSCs.
Collapse
Affiliation(s)
- Xiuhua Yao
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, No. 6, JiZhao Road, Hexi district, Tianjin, 300350, People's Republic of China
| | - Huiling Huang
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, No. 6, JiZhao Road, Hexi district, Tianjin, 300350, People's Republic of China.
| | - Zhou Li
- NewScen Coast Bio-Pharmaceutical Co., Ltd., 65 sixth Ave., TEDA, Tianjin, 300457, People's Republic of China
| | - Xiaohua Liu
- Arthro-Anda Tianjin Biologic Technology Co., Ltd., 2F Building No. 2, Tian Bao Industrial Park, Xi Qi Road, Tianjin Airport Industrial Park, Tianjin, 300308, People's Republic of China
| | - Weijia Fan
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, No. 6, JiZhao Road, Hexi district, Tianjin, 300350, People's Republic of China
| | - Xinping Wang
- Departement of Neurology, Tianjin Huanhu Hospital, No. 6, JiZhao Road, Hexi district, Tianjin, 300350, People's Republic of China
| | - Xuelian Sun
- Arthro-Anda Tianjin Biologic Technology Co., Ltd., 2F Building No. 2, Tian Bao Industrial Park, Xi Qi Road, Tianjin Airport Industrial Park, Tianjin, 300308, People's Republic of China
| | - Jianmin Zhu
- Arthro-Anda Tianjin Biologic Technology Co., Ltd., 2F Building No. 2, Tian Bao Industrial Park, Xi Qi Road, Tianjin Airport Industrial Park, Tianjin, 300308, People's Republic of China
| | - Hongrui Zhou
- NewScen Coast Bio-Pharmaceutical Co., Ltd., 65 sixth Ave., TEDA, Tianjin, 300457, People's Republic of China
| | - Huaying Wei
- Arthro-Anda Tianjin Biologic Technology Co., Ltd., 2F Building No. 2, Tian Bao Industrial Park, Xi Qi Road, Tianjin Airport Industrial Park, Tianjin, 300308, People's Republic of China
| |
Collapse
|
5
|
Diaz-Romero J, Kürsener S, Kohl S, Nesic D. S100B + A1 CELISA: A Novel Potency Assay and Screening Tool for Redifferentiation Stimuli of Human Articular Chondrocytes. J Cell Physiol 2016; 232:1559-1570. [DOI: 10.1002/jcp.25682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/08/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Jose Diaz-Romero
- Osteoarticular Research Group; Department of Clinical Research; University of Bern; Bern Switzerland
| | - Sibylle Kürsener
- Osteoarticular Research Group; Department of Clinical Research; University of Bern; Bern Switzerland
| | - Sandro Kohl
- Department of Orthopedics and Traumatology; Inselspital; University of Bern; Bern Switzerland
| | - Dobrila Nesic
- Osteoarticular Research Group; Department of Clinical Research; University of Bern; Bern Switzerland
- Department of Orthopedics and Traumatology; Inselspital; University of Bern; Bern Switzerland
| |
Collapse
|
6
|
Wei S, Lu Z, Zou Y, Lin X, Lin C, Liu B, Zheng L, Zhao J. A Novel Synthesized Sulfonamido-Based Gallate-JEZ-C as Potential Therapeutic Agents for Osteoarthritis. PLoS One 2015; 10:e0125930. [PMID: 26107568 PMCID: PMC4480854 DOI: 10.1371/journal.pone.0125930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/25/2015] [Indexed: 11/24/2022] Open
Abstract
Gallic acid (GA) and its derivatives are anti-inflammatory agents reported to have an effect on osteoarthritis (OA). However, GA has much weaker anti-oxidant effects and inferior bioactivity compared with its derivatives. We modified GA with the introduction of sulfonamide to synthesize a novel compound named JEZ-C and analyzed its anti-arthritis and chondro-protective effects. Comparison of JEZ-C with its sources i.e. GA and Sulfamethoxazole (SMZ) was also performed. Results showed that JEZ-C could effectively inhibit the IL-1-mediated induction of MMP-1 and MMP-13 and could induce the expression of TIMP-1, which demonstrated its ability to reduce the progression of OA. JEZ-C can also exert chondro-protective effects by promoting cell proliferation and maintaining the phenotype of articular chondrocytes, as evidenced by improved cell growth, enhanced synthesis of cartilage specific markers such as aggrecan, collagen II and Sox9. Meanwhile, expression of the collagen I gene was effectively downregulated, revealing the inhibition of chondrocytes dedifferentiation by JEZ-C. Hypertrophy that may lead to chondrocyte ossification was also undetectable in JEZ-C groups. The recommended dose of JEZ-C ranges from 6.25×10-7 μg/ml to 6.25×10-5 μg/ml, among which the most profound response was observed with 6.25×10-6 μg/ml. In contrast, its source products of GA and SMZ have a weak effect not only in the inhibition of OA but also in the bioactivity of chondrocytes, which indicated the significance of this modification. This study revealed JEZ-C as a promising novel agent in the treatment of chondral and osteochondral lesions.
Collapse
Affiliation(s)
- Shixiu Wei
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, 530021, China
| | - Zhenhui Lu
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiao Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning, 530022, China
| | - Cuiwu Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Buming Liu
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning, 530022, China
| | - Li Zheng
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
- * E-mail:
| | - Jinmin Zhao
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
7
|
Andrographolide enhances proliferation and prevents dedifferentiation of rabbit articular chondrocytes: an in vitro study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:984850. [PMID: 25802548 PMCID: PMC4353662 DOI: 10.1155/2015/984850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 12/15/2022]
Abstract
As the main active constituent of Andrographis paniculata that was applied in treatment of many diseases including inflammation in ancient China, andrographolide (ANDRO) was found to facilitate reduction of edema and analgesia in arthritis. This suggested that ANDRO may be promising anti-inflammatory agent to relieve destruction and degeneration of cartilage after inflammation. In this study, the effect of ANDRO on rabbit articular chondrocytes in vitro was investigated. Results showed that not more than 8 μM ANDRO did no harm to chondrocytes (P < 0.05). DNA content and glycosaminoglycan (GAG) /DNA were, respectively, improved in ANDRO groups comparing to the control (P < 0.05). ANDRO could promote expression of aggrecan, collagen II, and Sox9 genes while downregulating expression of collagen I gene (P < 0.05). Furthermore, hypertrophy that may result in chondrocyte ossification could not be detected in all groups (P > 0.05). The viability assay, hematoxylin-eosin, safranin O, and immunohistochemical staining also showed better performances in ANDRO groups. As to the doses, 3 μM ANDRO showed the best performance. The results indicate that ANDRO can accelerate proliferation of rabbit articular chondrocytes in vitro and meanwhile maintain the phenotype, which may provide valuable references for further exploration on arthritis.
Collapse
|
8
|
Liu Q, Lu Z, Wu H, Zheng L. Chondroprotective Effects of Taurine in Primary Cultures of Human Articular Chondrocytes. TOHOKU J EXP MED 2015; 235:201-13. [DOI: 10.1620/tjem.235.201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Qin Liu
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University
- The Medical and Scientific Research Center, Guangxi Medical University
| | - Zhenhui Lu
- The Medical and Scientific Research Center, Guangxi Medical University
| | - Huayu Wu
- Department of Cell Biology and Genetics, School of Premedical Sciences, Guangxi Medical University
| | - Li Zheng
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University
- The Medical and Scientific Research Center, Guangxi Medical University
| |
Collapse
|
9
|
Lu Z, Wei S, Wu H, Lin X, Lin C, Liu B, Zheng L, Zhao J. A novel synthesized sulfonamido-based gallic acid – LDQN-C: Effects on chondrocytes growth and phenotype maintenance. Bioorg Chem 2014; 57:99-107. [DOI: 10.1016/j.bioorg.2014.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 10/24/2022]
|
10
|
Huang H, Liu Q, Liu L, Wu H, Zheng L. Effect of epigallocatechin-3-gallate on proliferation and phenotype maintenance in rabbit articular chondrocytes in vitro.. Exp Ther Med 2014; 9:213-218. [PMID: 25452805 PMCID: PMC4247298 DOI: 10.3892/etm.2014.2057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/22/2014] [Indexed: 12/31/2022] Open
Abstract
In autologous chondrocyte implantation (ACI) to restore defective cartilage, limited cell numbers and dedifferentiation of chondrocytes are the major difficulties. An alternative is the use of growth factors, but their high cost and potential for tumorigenesis are major obstacles. To ensure successful ACI therapy, it is important to find an effective substitute pro-chondrogenic agent. Epigallocatechin-3-gallate (EGCG), one of the green tea catechins, has been widely investigated in studies of interleukin-1β-induced chondrocytes. In the present study, the effects of EGCG on rabbit articular chondrocytes were investigated through the examination of cell proliferation, morphology, glycosaminoglycan synthesis and cartilage-specific gene expression. The results showed that EGCG could effectively promote chondrocyte growth and enhance the secretion and synthesis of the cartilage extracellular matrix by upregulating expression levels of aggrecan, collagen II and Sox9 genes. Expression of the collagen I gene was downregulated, which showed that EGCG effectively inhibited the dedifferentiation of chondrocytes. Hypertrophy, which may lead to chondrocyte ossification, was also undetectable in the EGCG groups. In conclusion, the recommended dose of EGCG was found to be in the range of 5 to 20 μM, with the most marked response observed with 10 μM. The present study may provide a basis for the development of a novel agent as a substitute for growth factors in the treatment of articular cartilage defects.
Collapse
Affiliation(s)
- Haojia Huang
- Graduate School, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qin Liu
- Research Center for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China ; Medical and Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Lei Liu
- Research Center for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Huayu Wu
- Department of Cell Biology and Genetics, School of Premedical Sciences, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Li Zheng
- Research Center for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China ; Medical and Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
11
|
Effect of a novel synthesized sulfonamido-based gallate-SZNTC on chondrocytes metabolism in vitro. Chem Biol Interact 2014; 221:127-38. [DOI: 10.1016/j.cbi.2014.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/30/2014] [Accepted: 08/07/2014] [Indexed: 12/20/2022]
|
12
|
Effect of JEZTC, a synthetic compound, on proliferation and phenotype maintenance of rabbit articular chondrocytes in vitro. In Vitro Cell Dev Biol Anim 2014; 50:982-91. [DOI: 10.1007/s11626-014-9795-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/26/2014] [Indexed: 12/25/2022]
|
13
|
Xu GJ, Lu ZH, Lin X, Lin CW, Zheng L, Zhao JM. Effect of JJYMD-C, a novel synthetic derivative of gallic acid, on proliferation and phenotype maintenance in rabbit articular chondrocytes in vitro. ACTA ACUST UNITED AC 2014; 47:637-45. [PMID: 25003544 PMCID: PMC4165290 DOI: 10.1590/1414-431x20143935] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 03/20/2014] [Indexed: 01/06/2023]
Abstract
Tissue engineering encapsulated cells such as chondrocytes in the carrier matrix have
been widely used to repair cartilage defects. However, chondrocyte phenotype is
easily lost when chondrocytes are expanded in vitro by a process
defined as “dedifferentiation”. To ensure successful therapy, an effective
pro-chondrogenic agent is necessary to overcome the obstacle of limited cell numbers
in the restoration process, and dedifferentiation is a prerequisite. Gallic acid (GA)
has been used in the treatment of arthritis, but its biocompatibility is inferior to
that of other compounds. In this study, we modified GA by incorporating
sulfamonomethoxine sodium and synthesized a sulfonamido-based gallate, JJYMD-C, and
evaluated its effect on chondrocyte metabolism. Our results showed that JJYMD-C could
effectively increase the levels of the collagen II, Sox9, and aggrecan genes, promote
chondrocyte growth, and enhance secretion and synthesis of cartilage extracellular
matrix. On the other hand, expression of the collagen I gene was effectively
down-regulated, demonstrating inhibition of chondrocyte dedifferentiation by JJYMD-C.
Hypertrophy, as a characteristic of chondrocyte ossification, was undetectable in the
JJYMD-C groups. We used JJYMD-C at doses of 0.125, 0.25, and 0.5 µg/mL, and the
strongest response was observed with 0.25 µg/mL. This study provides a basis for
further studies on a novel agent in the treatment of articular cartilage defects.
Collapse
Affiliation(s)
- G J Xu
- The First Affiliated Hospital, Osteopathy Ward, Guangxi Medical University, Nanning, Guangxi, China
| | - Z H Lu
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, China
| | - X Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, China
| | - C W Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, China
| | - L Zheng
- Research Center for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - J M Zhao
- The First Affiliated Hospital, Osteopathy Ward, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
14
|
Bae JY, Han DW, Wakitani S, Nawata M, Hyon SH. Biological and Biomechanical Evaluations of Osteochondral Allografts Preserved in Cold Storage Solution Containing Epigallocatechin Gallate. Cell Transplant 2010; 19:681-9. [DOI: 10.3727/096368910x508771] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The beneficial effects of (-)-epigallocatechin-3- O-gallate (EGCG) on the nonfrozen preservation of mammalian cells and tissues are generally not well understood. A storage solution containing EGCG was employed to test the hypothesis that EGCG is capable of extending the storage duration for the cold preservation of articular cartilages. Human articular cartilages were preserved in a storage solution composed of serum-free RPMI-1640 medium with 1% antibiotic-antimycotic solution and 1 mM EGCG at 4°C for 1, 2, and 4 weeks. The chondrocyte viability (CCK-8 assay), biochemical and immunohistochemical composition [glycosaminoglycans (GAG) and (type II) collagen], and biomechanical property (compressive elastic modulus) were assessed. The chondrocyte viability of the cartilages preserved with EGCG was significantly well maintained for at least 2 weeks with high content of GAG and total collagen. These beneficial effects of EGCG were confirmed by the immunohistochemical observations of well-preserved cartilaginous structures and delayed denaturation of the extracellular matrix in preserved cartilages. There was no significant difference in the compressive elastic modulus (MPa) between the cartilages preserved with and without EGCG. These results suggest that EGCG may play an effective role in preserving osteochondral allografts, which can be exploited in devising strategies for the long-term preservation of other tissues under cold storage conditions.
Collapse
Affiliation(s)
- Jung Yoon Bae
- Department of Medical Simulation Engineering, Research Center for Nano Medical Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Dong-Wook Han
- Department of Nanomedical Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, Korea
| | - Shigeyuki Wakitani
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masashi Nawata
- Department of Orthopaedic Surgery, Marunouchi Hospital, Matsumoto, Japan
| | - Suong Hyu Hyon
- Department of Medical Simulation Engineering, Research Center for Nano Medical Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Kim MK, Choi SW, Kim SR, Oh IS, Won MH. Autologous chondrocyte implantation in the knee using fibrin. Knee Surg Sports Traumatol Arthrosc 2010; 18:528-34. [PMID: 19763540 DOI: 10.1007/s00167-009-0905-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 08/15/2009] [Indexed: 01/02/2023]
Abstract
Autologous chondrocyte implantation (ACI) is widely used to treat symptomatic articular cartilage injury of the knee. Fibrin ACI is a new tissue-engineering technique for the treatment of full-thickness articular cartilage defects, in which autologous chondrocytes are inserted into a three-dimensional scaffold provided by fibrin gel. The objective of this study is to document and compare mean changes in overall clinical scores at both baseline and follow-up. Fibrin ACI was used to treat deep cartilage defects of the femoral condyle in 30 patients. There were 24 men and 6 women with a median age of 35 years (range 15-55) and with a mean defect size of 5.8 cm(2) (range 2.3-12). Clinical and functional knee evaluations were performed using different scoring systems, MRI was performed 24 months postoperatively, and arthroscopy was performed 12 months postoperatively. All patients achieved clinical and functional status improvements following surgery (P < 0.01). The mean scores of the Henderson classification (MRI evaluation) significantly improved from 14.4 to 7 (P = 0.001), and no graft-associated complications were noted. Arthroscopic assessments performed 12 months postoperatively produced nearly normal (grade II) International Cartilage Repair Society scores in 8 of the 10 study patients. Fibrin ACI offers the advantages of technical simplicity, minimal invasiveness, a short surgery time, and easier access to difficult sites than classical ACI. Based on the findings of this clinical pilot study, we conclude that fibrin ACI offers a reliable means of treating articular cartilage defects of the knee.
Collapse
Affiliation(s)
- Myung Ku Kim
- Department of Orthopaedic Surgery, Inha University Hospital, Incheon, Korea
| | | | | | | | | |
Collapse
|
16
|
Bae JY, Matsumura K, Wakitani S, Kawaguchi A, Tsutsumi S, Hyon SH. Beneficial storage effects of epigallocatechin-3-o-gallate on the articular cartilage of rabbit osteochondral allografts. Cell Transplant 2009; 18:505-12. [PMID: 19775510 DOI: 10.1177/096368970901805-604] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A fresh osteochondral allograft is one of the most effective treatments for cartilage defects of the knee. Despite the clinical success, fresh osteochondral allografts have great limitations in relation to the short storage time that cartilage tissues can be well-preserved. Fresh osteochondral grafts are generally stored in culture medium at 4 degrees C. While the viability of articular cartilage stored in culture medium is significantly diminished within 1 week, appropriate serology testing to minimize the chances for the disease transmission requires a minimum of 2 weeks. (-)-Epigallocatechin-3-O-gallate (EGCG) has differential effects on the proliferation of cancer and normal cells, thus a cytotoxic effect on various cancer cells, but a cytopreservative effect on normal cells. Therefore, a storage solution containing EGCG might extend the storage duration of articular cartilages. Rabbit osteochondral allografts were performed with osteochondral grafts stored at 4 degrees C in culture medium containing EGCG for 2 weeks and then the clinical effects were examined with macroscopic and histological assessment after 4 weeks. The cartilaginous structure of an osteochondral graft stored with EGCG was well-preserved with high cell viability and glycosaminoglycan (GAG) content of the extracellular matrix (ECM). After an osteochondral allograft, the implanted osteochondral grafts stored with EGCG also provided a significantly better retention of the articular cartilage with viability and metabolic activity. These data suggest that EGCG can be an effective storage agent that allows long-term preservation of articular cartilage under cold storage conditions.
Collapse
Affiliation(s)
- Jung Yoon Bae
- Department of Medical Simulation Engineering, Research Center for Nano Medical Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 6060-8507, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Bernstein P, Dong M, Corbeil D, Gelinsky M, Günther KP, Fickert S. Pellet culture elicits superior chondrogenic redifferentiation than alginate-based systems. Biotechnol Prog 2009; 25:1146-52. [DOI: 10.1002/btpr.186] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
18
|
Hu W, Guo F, Li F, Huang H, Zhang W, Chen A. Construction of Sox9 gene eukaryotic expression vector and its inductive effects on directed differentiation of bone marrow stromal cells into precartilaginous stem cells in rats. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2009; 29:291-5. [PMID: 19513608 DOI: 10.1007/s11596-009-0305-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Indexed: 11/30/2022]
Abstract
Sox9 gene was cloned from immortalized precartilaginous stem cells and its eukaryotic expression vector constructed in order to explore the possibility of bone marrow-derived stromal cells differentiation into precartilaginous stem cells induced by Sox9. A full-length fragment of Sox9 was obtained by RT-PCR, inserted into pGEM-T Easy clone vector, and ligated with pEGFP-IRES2 expression vector by double digestion after sequencing. The compound plasmid was transfected into born marrow-derived stromal cells by Lipofectamine 2000, and the transfection efficacy and the expression of Sox9 and FGFR-3 were observed. Flow cytometry was used to identify the cell phenotype, and MTT was employed to assay proliferative viability of cells. Sequencing, restrictive endonuclease identification and RT-PCR confirmed that the expansion of Sox9 and construction of Sox9 expression vector were successful. After transfection of the recombinant vector into bone marrow-derived stromal cells, the expression of Sox9 and FGFR-3 was detected, and proliferative viability was not different from that of precartilaginous stem cells. It was concluded that Sox9 gene eukaryotic expression vector was successfully constructed, and the transfected bone marrow-derived stromal cells differentiated into the precartilaginous stem cells.
Collapse
Affiliation(s)
- Weihua Hu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Tallheden T, Brittberg M, Peterson L, Lindahl A. Human articular chondrocytes--plasticity and differentiation potential. Cells Tissues Organs 2007; 184:55-67. [PMID: 17361078 DOI: 10.1159/000098947] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2006] [Indexed: 12/14/2022] Open
Abstract
Articular cartilage has no or very low ability of self-repair, and untreated lesions may lead to the development of osteoarthritis. One method which has been proven to result in long-term repair of isolated lesions is autologous chondrocyte transplantation. In this method, culture-expanded chondrocytes isolated from full-thickness biopsies, taken from a non-weight-bearing area at the supromedial edge of the femoral condyle, are transplanted back to the patient under a cover of periosteum. The treatment is able to regenerate hyaline cartilage with long-term durability. Although the repair mechanism behind this treatment has not been fully elucidated, emerging data generated by microarray technologies reveal an interesting regeneration process involving cellular and molecular mechanisms found during fetal development. In hyaline cartilage, the human chondrocyte population is generally considered a homogenous cell population, but recently several investigators have demonstrated that cells isolated from human articular cartilage have stem cell properties and that the superficial layer contains such cells. This paper will discuss these recent data and their implications for future treatment strategies aiming to induce regeneration in articular cartilage surfaces.
Collapse
Affiliation(s)
- Tommi Tallheden
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg University, Goteborg, Sweden.
| | | | | | | |
Collapse
|
21
|
Kino-Oka M, Maeda Y, Yamamoto T, Sugawara K, Taya M. A kinetic modeling of chondrocyte culture for manufacture of tissue-engineered cartilage. J Biosci Bioeng 2005; 99:197-207. [PMID: 16233778 DOI: 10.1263/jbb.99.197] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Accepted: 01/07/2005] [Indexed: 11/17/2022]
Abstract
For repairing articular cartilage defects, innovative techniques based on tissue engineering have been developed and are now entering into the practical stage of clinical application by means of grafting in vitro cultured products. A variety of natural and artificial materials available for scaffolds, which permit chondrocyte cells to aggregate, have been designed for their ability to promote cell growth and differentiation. From the viewpoint of the manufacturing process for tissue-engineered cartilage, the diverse nature of raw materials (seeding cells) and end products (cultured cartilage) oblige us to design a tailor-made process with less reproducibility, which is an obstacle to establishing a production doctrine based on bioengineering knowledge concerning growth kinetics and modeling as well as designs of bioreactors and culture operations for certification of high product quality. In this article, we review the recent advances in the manufacturing of tissue-engineered cartilage. After outlining the manufacturing processes for tissue-engineered cartilage in the first section, the second and third sections, respectively, describe the three-dimensional culture of chondrocytes with Aterocollagen gel and kinetic model consideration as a tool for evaluating this culture process. In the final section, culture strategy is discussed in terms of the combined processes of monolayer growth (ex vivo chondrocyte cell expansion) and three-dimensional growth (construction of cultured cartilage in the gel).
Collapse
Affiliation(s)
- Masahiro Kino-Oka
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | | | | | | | | |
Collapse
|
22
|
Lee CY, Liu X, Hsu HC, Wang DY, Luo ZP. A modified cell culture method for autologous chondrocyte transplantation. Connect Tissue Res 2005; 46:93-9. [PMID: 16019419 DOI: 10.1080/03008200590954122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Autologous chondrocyte transplantation (ACT) is a promising method to treat chondral and osteochondral defects. This study introduced a modified method for cell culture in ACT. Porcine chondrocytes were cultured for 3 weeks under low hydrostatic pressure at 250 Pa. The results showed that the dry weight of the cartilage-like membrane in the loading group was 3.0 times more than the control group (no loading) (p < 0.01), and cell numbers were significantly increased by 3.1 times (p < 0.01) after a 3-week culture. Compared with the fresh tissue sample, the mRNA expression of collagen II was not statistically different and the mRNA of aggrecan was only slightly decreased by 19%. These data suggest that the hydrostatic pressure at this level significantly increased the cell numbers and biosynthesis of cultured chondrocytes.
Collapse
Affiliation(s)
- Chun-Yi Lee
- Department of Orthopaedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
23
|
Katayama R, Wakitani S, Tsumaki N, Morita Y, Matsushita I, Gejo R, Kimura T. Repair of articular cartilage defects in rabbits using CDMP1 gene-transfected autologous mesenchymal cells derived from bone marrow. Rheumatology (Oxford) 2004; 43:980-5. [PMID: 15187242 DOI: 10.1093/rheumatology/keh240] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Cartilage-derived morphogenetic protein 1 (CDMP1), which is a member of the transforming growth factor-beta superfamily, is an essential molecule for the aggregation of mesenchymal cells and acceleration of chondrocyte differentiation. In this study, we investigated whether CDMP1-transfected autologous bone marrow-derived mesenchymal cells (BMMCs) enhance in vivo cartilage repair in a rabbit model. METHODS BMMCs, which had a fibroblastic morphology and pluripotency for differentiation, were isolated from bone marrow of the tibia of rabbits, grown in monolayer culture, and transfected with the CDMP1 gene or a control gene (GFP) by the lipofection method. The autologous cells were then implanted into full-thickness articular cartilage defects in the knee joints of each rabbit. RESULTS During in vivo repair of full-thickness articular cartilage defects, cartilage regeneration was enhanced by the implantation of CDMP1-transfected autologous BMMCs. The defects were filled by hyaline cartilage and the deeper zone showed remodelling to subchondral bone over time. The repair and reconstitution of zones of hyaline articular cartilage was superior to simple BMMC implantation. The histological score of the CDMP1-transfected BMMC group was significantly better than those of the control BMMC group and the empty control group. CONCLUSION Modulation of BMMCs by factors such as CDMP1 allows enhanced repair and remodelling compatible with hyaline articular cartilage.
Collapse
Affiliation(s)
- R Katayama
- Department of Orthopaedic Surgery, Toyama Medical and Pharmaceutical University, Japan.
| | | | | | | | | | | | | |
Collapse
|