1
|
Borlongan CV, Yu G, Matsukawa N, Yasuhara T, Hara K, Xu L. Article Commentary: Cell Transplantation: Stem Cells in the Spotlight. Cell Transplant 2017; 14:519-526. [DOI: 10.3727/000000005783982774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Cesar V. Borlongan
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Guolong Yu
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Noriyuki Matsukawa
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Takao Yasuhara
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Koichi Hara
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Lin Xu
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| |
Collapse
|
2
|
Sanberg PR, Greene-Zavertnik C, Davis CD. Article Commentary: Cell Transplantation: The Regenerative Medicine Journal. A Biennial Analysis of Publications. Cell Transplant 2017; 12:815-825. [DOI: 10.3727/000000003771000165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612
| | - Cathryn Greene-Zavertnik
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612
| | - Cyndy D. Davis
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612
| |
Collapse
|
3
|
Hashemian S, O'Rourke C, Phillips JB, Strömberg I, Af Bjerkén S. Embryonic and mature astrocytes exert different effects on neuronal growth in rat ventral mesencephalic slice cultures. SPRINGERPLUS 2015; 4:558. [PMID: 26435904 PMCID: PMC4586178 DOI: 10.1186/s40064-015-1362-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/21/2015] [Indexed: 11/10/2022]
Abstract
One obstacle with grafting of dopamine neurons in Parkinson’s disease is the insufficient ability of the transplant to reinnervate the host striatum. Another issue is the prospective interaction between the donor fetal tissue and the adult astrocytes of the host. To study nerve fiber growth and its interaction with immature/mature astrocytes, ventral mesencephalic (VM) organotypic rat tissue cultures from embryonic days (E) 12, E14, and E18 were studied up to 35 days in vitro (DIV), and co-cultures of E14 VM tissue and mature green fluorescent protein (GFP)-positive astrocytes were performed. Generally, nerve fibers grew from the tissue slice either in association with a monolayer of migrated astroglia surrounding the tissue (glial-associated), or distal to the astroglia as non-glial-associated outgrowth. The tyrosine hydroxylase (TH)-positive glial-associated nerve fiber outgrowth reached a plateau at 21 DIV in E12 and E14 cultures. In E18 cultures, TH-positive neurons displayed short processes and migrated onto the astrocytes. While the non-glial-associated nerve fiber outgrowth dominated the E14 cultures, it was found absent in E18 cultures. The GFP-positive cells in the VM and GFP-positive astrocyte co-cultures were generally located distal to the monolayer of migrated fetal astrocytes, a few GFP-positive cells were however observed within the astrocytic monolayer. In those cases TH-positive neurons migrated towards the GFP-positive cells. Both the non-glial- and glial-associated nerve fibers grew onto the GFP-positive cells. Taken together, the glial-associated growth has limited outgrowth compared to the non-glial-associated nerve fibers, while none of the outgrowth types were hampered by the mature astrocytes.
Collapse
Affiliation(s)
- Sanaz Hashemian
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Caitriona O'Rourke
- Department of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA UK ; Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray's Inn Road, London, WC1X 8LD UK
| | - James B Phillips
- Department of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA UK ; Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray's Inn Road, London, WC1X 8LD UK
| | - Ingrid Strömberg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Sara Af Bjerkén
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
4
|
Chen L, Liu M, Huang X, Zheng Y, Qiu J, Liu H. A Modified Nerve-Sparing Panhysterectomy for Benign Uterine Diseases: Techniques and Evaluation of Postoperative Pelvic Dysfunctions. Gynecol Obstet Invest 2015; 80:38-45. [PMID: 25823505 DOI: 10.1159/000370149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/26/2014] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To describe a modified nerve-sparing panhysterectomy and to investigate the feasibility and impact of this nerve-sparing technique in improving postoperative pelvic visceral dysfunctions of benign uterine disease patients. METHODS From January 2008 to January 2010, a total of 300 patients diagnosed with benign uterine diseases at the Second Affiliated Hospital of Nantong University were enrolled. Of those, 150 randomly selected patients underwent modified panhysterectomy (research group), while the other 150 patients underwent conventional panhysterectomy (control group). The surgery-related parameters, including operation time, intraoperative blood loss, length of hospital stay, postoperative indwelling catheter time, and first voiding and defecation time were compared between the two groups. The extent of nerve damage in both groups was examined using the nerve-specific marker S-100 via immunohistochemistry. Besides, postoperative assessments of bladder and bowel functions were conducted within 1 year after the operation. RESULTS The surgery-related parameters in the two groups showed no significant difference (p > 0.05). Immunohistochemistry results showed significantly reduced damage of the nerves in the research group. We also found a better bladder and bowel function in the research group (p < 0.05) and in younger patients (p < 0.05) compared with that in the control group. Recovery trends of the bladder and bowel function were found in both groups (χ(2) = 7.512, p = 0.006 in the research group; χ(2) = 7.299, p = 0.007 in the control group). CONCLUSION Modified panhysterectomy for benign uterine diseases seems feasible and safe, with the main advantage of improving postoperative urocystic and rectal dysfunctions through the preservation of the pelvic autonomic nerves.
Collapse
Affiliation(s)
- Liping Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Nantong University, Nantong, PR China
| | | | | | | | | | | |
Collapse
|
5
|
Baron O, Ratzka A, Grothe C. Fibroblast growth factor 2 regulates adequate nigrostriatal pathway formation in mice. J Comp Neurol 2013; 520:3949-61. [PMID: 22592787 DOI: 10.1002/cne.23138] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fibroblast growth factor 2 (FGF-2) is an important neurotrophic factor that promotes survival of adult mesencephalic dopaminergic (mDA) neurons and regulates their adequate development. Since mDA neurons degenerate in Parkinson's disease, a comprehensive understanding of their development and maintenance might contribute to the development of causative therapeutic approaches. The current analysis addressed the role of FGF-2 in mDA axonal outgrowth, pathway formation, and innervation of respective forebrain targets using organotypic explant cocultures of ventral midbrain (VM) and forebrain (FB). An enhanced green fluorescent protein (EGFP) transgenic mouse strain was used for the VM explants, which allowed combining and distinguishing of individual VM and FB tissue from wildtype and FGF-2-deficient embryonic day (E)14.5 embryos, respectively. These cocultures provided a suitable model to study the role of target-derived FB and intrinsic VM-derived FGF-2. In fact, we show that loss of FGF-2 in both FB and VM results in significantly increased mDA fiber outgrowth compared to wildtype cocultures, proving a regulatory role of FGF-2 during nigrostriatal wiring. Further, we found in heterogeneous cocultures deficient for FGF-2 in FB and VM, respectively, similar phenotypes with wider fiber tracts compared to wildtype cocultures and shorter fiber outgrowth distance than cocultures completely deficient for FGF-2. Additionally, the loss of target-derived FGF-2 in FB explants resulted in decreased caudorostral glial migration. Together these findings imply an intricate interplay of target-derived and VM-derived FGF signaling, which assures an adequate nigrostriatal pathway formation and target innervation.
Collapse
Affiliation(s)
- Olga Baron
- Institute of Neuroanatomy, Hannover Medical School, 30625 Hannover, Germany
| | | | | |
Collapse
|
6
|
Marschinke F, Hashemian S, Matozaki T, Oldenborg PA, Strömberg I. The absence of CD47 promotes nerve fiber growth from cultured ventral mesencephalic dopamine neurons. PLoS One 2012; 7:e45218. [PMID: 23049778 PMCID: PMC3458886 DOI: 10.1371/journal.pone.0045218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/14/2012] [Indexed: 11/19/2022] Open
Abstract
In ventral mesencephalic organotypic tissue cultures, two timely separated sequences of nerve fiber growth have been observed. The first appearing nerve fiber pattern is a long-distance outgrowth that occurs before astrocytes start to proliferate and migrate to form an astrocytic monolayer that finally surrounds the tissue slice. These long-distance growing nerve fibers are retracted as the astrocytes migrate, and are followed by a secondary outgrowth. The secondary outgrowth is persistent in time but reaches short distances, comparable with outgrowth seen from a dopaminergic graft implanted to the brain. The present study was focused on the interaction between the astrocytes and the long-distance growing non-glial associated nerve fibers. Cross talk between astroglia and neurite formation might occur through the integrin-associated protein CD47. CD47 serves as a ligand for signal regulatory protein (SIRP) α and as a receptor for the extracellular matrix protein thrombospondin-1 (TSP-1). Embryonic day 14 ventral mesencephalic tissue from CD47+/+ and CD47−/− mice was used to investigate astrocytic migration and the tyrosine hydroxylase (TH) –positive outgrowth that occurred remote from the astrocytes. TH-immunohistochemistry demonstrated that the non-glial-associated nerve fiber outgrowth in CD47−/− cultures reached significantly longer distances and higher density compared to nerve fibers formed in CD47+/+ cultures at 14 days in vitro. These nerve fibers often had a dotted appearance in CD47+/+ cultures. No difference in the astrocytic migration was observed. Further investigations revealed that the presence of CD47 in control culture did neither hamper non-glial-associated growth through SIRPα nor through TSP-1 since similar outgrowth was found in SIRPα mutant cultures and in CD47+/+ cultures treated with blocking antibodies against the TSP-1, respectively, as in the control cultures. In conclusion, long-distance growing nerve fiber formation is promoted by the absence of CD47, even though the presence of astrocytes is not inhibited.
Collapse
Affiliation(s)
| | - Sanaz Hashemian
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Per-Arne Oldenborg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Ingrid Strömberg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
7
|
Grafted dopamine neurons: Morphology, neurochemistry, and electrophysiology. Prog Neurobiol 2010; 90:190-7. [DOI: 10.1016/j.pneurobio.2009.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/23/2009] [Accepted: 10/09/2009] [Indexed: 01/02/2023]
|
8
|
Prasad AA, Pasterkamp RJ. Axon guidance in the dopamine system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 651:91-100. [PMID: 19731554 DOI: 10.1007/978-1-4419-0322-8_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Meso-diencephalic dopamine neurons (mdDA) neurons are located in the retrorubral field (RRF), substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) and give rise to prominent ascending axon projections. These so-called mesotelencephalic projections are organized into three main pathways: the mesostriatal, mesocortical and mesolimbic pathways. Mesotelencephalic pathways in the adult nervous system have been studied in much detail as a result of their important physiological functions and their implication in psychiatric, neurological and neurodegenerative disease. In comparison, relatively little is known about the formation of these projection systems during embryonic and postnatal development. However, understanding the formation of mdDA neurons and their projections is essential for the design of effective therapies for mdDA neuron-associated neurological and neurodegenerative disorders. Here we summarize our current knowledge of the ontogeny of mdDA axon projections in subsystems of the developing rodent central nervous system (CNS) and discuss the cellular and molecular mechanisms that mediate mdDA axon guidance in these CNS regions.
Collapse
Affiliation(s)
- Asheeta A Prasad
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
9
|
Inhibition of astrocytes promotes long‐distance growing nerve fibers in ventral mesencephalic cultures. Int J Dev Neurosci 2008; 26:683-91. [DOI: 10.1016/j.ijdevneu.2008.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 07/17/2008] [Accepted: 07/17/2008] [Indexed: 11/18/2022] Open
|
10
|
Marschinke F, Strömberg I. Dual effects of TNFalpha on nerve fiber formation from ventral mesencephalic organotypic tissue cultures. Brain Res 2008; 1215:30-9. [PMID: 18482714 DOI: 10.1016/j.brainres.2008.03.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 02/12/2008] [Accepted: 03/26/2008] [Indexed: 01/03/2023]
Abstract
Tumor necrosis factor alpha (TNFalpha) is toxic to dopamine neurons and increased levels of TNFalpha are observed in Parkinson's disease. Dopamine nerve fiber outgrowth in organotypic cultures of fetal ventral mesencephalon occurs in two waves. The early appearing nerve fibers are formed in the absence of astroglia, while migrating astrocytes guide the late appearing dopamine nerve fibers. TNFalpha (40 ng/ml) was added to the medium of organotypic ventral mesencephalic tissue cultures between days 4-7 and 11-14. The cultures were evaluated at days 7 or 19 to study the effects of TNFalpha on both types of nerve fiber formation. Tyrosine hydroxylase (TH)-immunohistochemistry demonstrated that the number of cultures showing non-glial-guided TH-positive outgrowth was reduced compared to controls, when TNFalpha was added at day 4. By contrast, the glial-guided TH-positive nerve fiber outgrowth and the astrocytic migration reached significantly longer distances by early TNFalpha treatment. Ki67-immunohistochemistry revealed that TNFalpha did not affect proliferation of astrocytes. Treatment with TNFalpha and antibodies against TNFalpha receptor 1 between days 4 and 7 revealed that the non-glial-guided TH-positive outgrowth reappeared. TNFalpha treatment between days 11 and 14 triggered neither the TH-positive glial-guided outgrowth, nor promoted the astrocytic migration to reach longer distances. The number of microglia was significantly increased after the late but not early TNFalpha treatment. In conclusion, TNFalpha is toxic for the non-glial dopaminergic nerve fiber outgrowth but stimulates the glial-guided outgrowth and the migration of astrocytes at an early time point. TNFalpha increased the number of microglia in VM tissue cultures after late but not after early treatment.
Collapse
Affiliation(s)
- Franziska Marschinke
- Department of Integrative Medical Biology, Umeå University, S-901 87 Umeå, Sweden
| | | |
Collapse
|
11
|
Berglöf E, Af Bjerkén S, Strömberg I. Glial influence on nerve fiber formation from rat ventral mesencephalic organotypic tissue cultures. J Comp Neurol 2007; 501:431-42. [PMID: 17245706 DOI: 10.1002/cne.21251] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rat fetal ventral mesencephalic organotypic cultures have demonstrated two morphologically different dopamine nerve fiber growth patterns, in which the initial nerve fibers are formed in the absence of astrocytes and the second wave is guided by astrocytes. In this study, the presence of subpopulations of dopamine neurons, other neuronal populations, and glial cells was determined. We used "roller-drum" organotypic cultures, and the results revealed that beta-tubulin-positive/tyrosine hydroxylase (TH)-negative nerve fibers were present as early as 1 day in vitro (DIV). A similar growth pattern produced by TH-positive neurons was present from 2 DIV. These neurites grew to reach distances over 4 mm and over time appeared to be degenerating. Thin, vimentin-positive processes were found among these nerve fibers. As the first growth was retracted, a second outgrowth was initiated and formed on migrating astrocytes. TH- and aldehyde dehydrogenase-1 (ALDH1)-positive nerve fibers formed both the nonglia-associated and the glia-associated outgrowth. In cultures with membrane inserts, only the glia-associated outgrowth was found. Vimentin-positive cells preceded migration of NG2-positive oligodendrocytes and Iba-1-positive microglia. Oligodendrocytes appeared not to be involved in guiding neuritic growth, but microglia was absent over areas dense with TH-positive neurons. In conclusion, in "roller-drum" cultures, nerve fibers are generally formed in two sequences. The early-formed nerve fibers grow in the presence of thin, vimentin-positive processes. The second nerve fiber outgrowth is formed on astroglia, with no correlation to the presence of oligodendrocytes or microglia. ALDH1-positive nerve fibers, presumably derived from A9 dopamine neurons, participate in formation of both sequences of outgrowth.
Collapse
Affiliation(s)
- Elisabet Berglöf
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
12
|
Bjerkén SA, Boger HA, Nelson M, Hoffer BJ, Granholm AC, Strömberg I. Effects of glial cell line-derived neurotrophic factor deletion on ventral mesencephalic organotypic tissue cultures. Brain Res 2007; 1133:10-9. [PMID: 17184739 PMCID: PMC2670563 DOI: 10.1016/j.brainres.2006.11.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 11/01/2006] [Accepted: 11/14/2006] [Indexed: 01/03/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is potent for survival and promotion of nerve fibers from midbrain dopamine neurons. It is also known to exert different effects on specific subpopulations of dopamine neurons. In organotypic tissue cultures, dopamine neurons form two diverse nerve fiber growth patterns, targeting the striatum differently. The aim of this study was to investigate the effect of GDNF on the formation of dopamine nerve fibers. Organotypic tissue cultures of ventral mesencephalon of gdnf gene-deleted mice were studied. The results revealed that dopamine neurons survive in the absence of GDNF. Tyrosine hydroxylase immunoreactivity demonstrated, in gdnf knockout and wildtype cultures, nerve fiber formation with two separate morphologies occurring either in the absence or the presence of astrocytes. The outgrowth that occurred in the absence of astrocytes was unaffected by gdnf deletion, whereas nerve fibers guided by the presence of astrocytes were affected in that they reached significantly shorter distances from the gdnf gene-deleted tissue slice, compared to those measured in wildtype cultures. Treatment with GDNF reversed this effect and increased nerve fiber density independent of genotype. Furthermore, migration of astrocytes reached significantly shorter distances from the tissue slice in GDNF knockout compared to wildtype cultures. Exogenous GDNF increased astrocytic migration in gdnf gene-deleted tissue cultures, comparable to lengths observed in wildtype tissue cultures. In conclusion, cultured midbrain dopamine neurons survive in the absence of GDNF, and the addition of GDNF improved dopamine nerve fiber formation - possibly as an indirect effect of astrocytic stimulation.
Collapse
Affiliation(s)
- Sara af Bjerkén
- Department of Integrative Medical Biology, Umeå University, S 901 87 Umeå, Sweden
| | - Heather A. Boger
- Department of Integrative Medical Biology, Umeå University, S 901 87 Umeå, Sweden
| | - Matthew Nelson
- Department of Physiology and Neuroscience and the Center on Aging, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Barry J. Hoffer
- Cellular Neurophysiology, National Institute on Drug Abuse/NIH, Baltimore, MD 21224, USA
| | - Ann-Charlotte Granholm
- Department of Physiology and Neuroscience and the Center on Aging, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ingrid Strömberg
- Department of Integrative Medical Biology, Umeå University, S 901 87 Umeå, Sweden
| |
Collapse
|
13
|
Berglöf E, Plantman S, Johansson S, Strömberg I. Inhibition of proteoglycan synthesis affects neuronal outgrowth and astrocytic migration in organotypic cultures of fetal ventral mesencephalon. J Neurosci Res 2007; 86:84-92. [PMID: 17868150 DOI: 10.1002/jnr.21465] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Grafting fetal ventral mesencephalon has been utilized to alleviate the symptoms of Parkinson's disease. One obstacle in using this approach is the limited outgrowth from the transplanted dopamine neurons. Thus, it is important to evaluate factors that promote outgrowth from fetal dopamine neurons. Proteoglycans (PGs) are extracellular matrix molecules that modulate neuritic growth. This study was performed to evaluate the role of PGs in dopamine nerve fiber formation in organotypic slice cultures of fetal ventral mesencephalon. Cultures were treated with the PG synthesis inhibitor methyl-umbelliferyl-beta-D-xyloside (beta-xyloside) and analyzed using antibodies against tyrosine hydroxylase (TH) to visualize dopamine neurons, S100beta to visualize astrocytes, and neurocan to detect PGs. Two growth patterns of TH-positive outgrowth were observed: nerve fibers formed in the presence of astrocytes and nerve fibers formed in the absence of astrocytes. Treatment with beta-xyloside significantly reduced the distance of glial-associated TH-positive nerve fiber outgrowth but did not affect the length of the non-glial-associated nerve fibers. The addition of beta-xyloside shifted the nerve fiber growth pattern from being mostly glial-guided to being non-glial-associated, whereas the total amount of TH protein was not affected. Further, astrocytic migration and proliferation were impaired after beta-xyloside treatment, and levels of non-intact PG increased. beta-Xyloside treatment changed the distribution of neurocan in astrocytes, from being localized in vesicles to being diffusely immunoreactive in the processes. To conclude, inhibition of PG synthesis affects glial-associated TH-positive nerve fiber formation in ventral mesencephalic cultures, which might be an indirect effect of impaired astrocytic migration.
Collapse
Affiliation(s)
- Elisabet Berglöf
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | | | | |
Collapse
|
14
|
Johansson S, Lee IH, Olson L, Spenger C. Olfactory ensheathing glial co-grafts improve functional recovery in rats with 6-OHDA lesions. Brain 2005; 128:2961-76. [PMID: 16251218 DOI: 10.1093/brain/awh644] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Olfactory ensheathing cells (OEC) transplanted to the site of a spinal cord injury can promote axonal sparing/regeneration and functional recovery. The purpose of this study was to investigate if OEC enhance the effects of grafted dopamine-neuron-rich ventral mesencephalic tissue (VM) in a rodent model of Parkinson's disease. We co-grafted VM with either OEC or astrocytes derived from the same olfactory bulbs as the OEC to rats with a unilateral 6-hydroxydopamine lesion of the nigrostriatal system. Co-grafting fetal VM with OEC, but not with astrocytes enhanced dopamine cell survival, striatal reinnervation and functional recovery of amphetamine- and apomorphine-induced rotational behaviour compared with grafting embryonic VM alone. Grafting OEC or astrocytes alone had no effects. Intriguingly, only in the presence of OEC co-grafts, did dopamine neurons extend strikingly long neurites that reached peripheral striatal compartments. Comparable results were observed in a co-culture system where OEC promoted dopamine cell survival and neurite elongation through a mechanism involving both releasable factors and direct contact. Cell type analysis of fetal VM grafts suggested that dopamine neurons of the substantia nigra rather than of the ventral tegmental area were increased in the presence of OEC co-grafts. We conclude that the addition of OEC enhances efficacy of grafted immature dopamine neurons in a rat Parkinson's disease model.
Collapse
Affiliation(s)
- Saga Johansson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
15
|
Maas CP, Kenter GG, Trimbos JB, Deruiter MC. Anatomical basis for nerve-sparing radical hysterectomy: immunohistochemical study of the pelvic autonomic nerves. Acta Obstet Gynecol Scand 2005; 84:868-74. [PMID: 16097978 DOI: 10.1111/j.0001-6349.2005.00742.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Autonomic nerve damage plays a crucial role in the etiology of bladder dysfunction, sexual dysfunction, and colorectal motility disorders that occur after radical hysterectomy. We investigated the extent and nature of nerve damage in conventional and nerve-sparing radical hysterectomy. METHODS Macroscopical disruption of nerves was assessed through anatomical dissection after conventional and nerve-sparing surgery on five fixed and one fresh cadaver. Immunohistochemical analysis of surgical margins was performed to confirm nerve damage using a general nerve marker (S100) and a sympathetic nerve marker (anti-tyrosine hydroxylase) within sections of biopsies. RESULTS Macroscopical dissection showed that in the conventional procedure, transsection of the uterosacral ligaments resulted in disruption of the major part of the hypogastric nerve. After nerve-sparing surgery, only the medial branches of the hypogastric nerve appeared disrupted. Division of the cardinal ligaments in the conventional procedure identified the inferior hypogastric plexus running into the most posterior border of the surgical margin. The anterior part of the plexus was disrupted. Dissection of the nerves after the nerve-sparing procedure showed that this anterior part of the plexus was not involved in the surgical dissection line. Dissection of the vesicouterine ligament disrupted only small nerves on the medial border of the inferior hypogastric plexus in both techniques. Microscopical evaluation of the surgical margins confirmed the macroscopical findings. CONCLUSION Conventional radical hysterectomy results in disruption of a substantial part of the pelvic autonomic nerves. The nerve-sparing modification leads to macroscopic reduction in nerve disruption which is substantiated by microscopical evaluation of surgical margins.
Collapse
Affiliation(s)
- Cornelis P Maas
- Department of Gynecology, Leiden University Medical Center, PO Box 9602, 2300 RC Leiden, The Netherlands
| | | | | | | |
Collapse
|
16
|
Whittemore SR, Strömberg I. Emerging Strategies in Neural Transplantation and Repair: A Special Section Based on the INTR-8 Conference. Cell Transplant 2003; 12:199-200. [PMID: 28853927 DOI: 10.3727/000000003108746731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Scott R Whittemore
- Kentucky Spinal Cord Injury Research Center Department of Neurological Surgery, MDR616 University of Louisville School of Medicine
| | | |
Collapse
|