1
|
Borlongan CV, Yu G, Matsukawa N, Yasuhara T, Hara K, Xu L. Article Commentary: Cell Transplantation: Stem Cells in the Spotlight. Cell Transplant 2017; 14:519-526. [DOI: 10.3727/000000005783982774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Cesar V. Borlongan
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Guolong Yu
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Noriyuki Matsukawa
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Takao Yasuhara
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Koichi Hara
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Lin Xu
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| |
Collapse
|
2
|
Fricker-Gates RA, Muir JA, Dunnett SB. Transplanted hNT Cells (“LBS Neurons”) in a Rat Model of Huntington's Disease: Good Survival, Incomplete Differentiation, and Limited Functional Recovery. Cell Transplant 2017; 13:123-36. [PMID: 15129758 DOI: 10.3727/000000004773301807] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A variety of immortalized cell lines have been proposed to exhibit sufficient phenotypic plasticity to allow them to replace primary embryonic neurons for restorative cell transplantation. In the present experiments we evaluate the functional viability of one particular cell line, the hNT cells developed by Layton Bioscience, to replace lost neurons and alleviate asymmetrical motor deficits in a unilateral excitotoxic lesion model of Huntington's disease. Because the grafts involved implantation of human-derived cells into a rat host environment, all animals were immunosuppressed. Cyclosporin A and FK-506 were similar in providing effective immunoprotection of the hNT xenografts, and whereas the lesions induced a marked inflammatory response in the host brain, this was not exacerbated by the presence of xenograft cells. The presence of grafted cells was determined with the human-specific antigen HuNu, and good graft survival was demonstrated in almost all animals up to the longest survival examined, 16 weeks posttransplantation. Although the cells exhibited progressively greater maturation and differentiation at 10-day, 4- and 16-week time points, staining for the mature neuronal marker NeuN was at best very weak, and we were unable to detect unequivocal staining with any markers of mature striatal phenotype, including DARPP-32, calbindin, parvalbumin, choline acetyl transferase, or NADPH diaphorase (with in all cases positive control provided by good staining on the intact contralateral side of the brain). Nor were we able to detect any differences between rats with lesions alone and rats with grafts in the contralateral motor deficits exhibited in a test of skilled paw reaching or cylinder placing. These results suggest that further and more extensive studies should be undertaken to assess whether hNT neurons can show more extensive and appropriate maturation and be associated with recovery in appropriate behavioral models, before they may be considered a suitable replacement for primary embryonic cells for clinical application in Huntington's disease.
Collapse
|
3
|
Sanberg PR, Greene-Zavertnik C, Davis CD. Article Commentary: Cell Transplantation: The Regenerative Medicine Journal. A Biennial Analysis of Publications. Cell Transplant 2017; 12:815-825. [DOI: 10.3727/000000003771000165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612
| | - Cathryn Greene-Zavertnik
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612
| | - Cyndy D. Davis
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612
| |
Collapse
|
4
|
Tartaglione AM, Popoli P, Calamandrei G. Regenerative medicine in Huntington's disease: Strengths and weaknesses of preclinical studies. Neurosci Biobehav Rev 2017; 77:32-47. [PMID: 28223129 DOI: 10.1016/j.neubiorev.2017.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/26/2017] [Accepted: 02/17/2017] [Indexed: 01/22/2023]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder, characterized by impairment in motor, cognitive and psychiatric domains. Currently, there is no specific therapy to act on the onset or progression of HD. The marked neuronal death observed in HD is a main argument in favour of stem cells (SCs) transplantation as a promising therapeutic perspective to replace the population of lost neurons and restore the functionality of the damaged circuitry. The availability of rodent models of HD encourages the investigation of the restorative potential of SCs transplantation longitudinally. However, the results of preclinical studies on SCs therapy in HD are so far largely inconsistent; this hampers the individuation of the more appropriate model and precludes the comparative analysis of transplant efficacy on behavioural end points. Thus, this review will describe the state of the art of in vivo research on SCs therapy in HD, analysing in a translational perspective the strengths and weaknesses of animal studies investigating the therapeutic potential of cell transplantation on HD progression.
Collapse
Affiliation(s)
- A M Tartaglione
- Centre for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - P Popoli
- National Centre for Medicines Research and Preclinical/Clinical Evaluation, Rome, Italy
| | - G Calamandrei
- Centre for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
5
|
Nigral 6-hydroxydopamine lesion impairs performance in a lateralised choice reaction time task--impact of training and task parameters. Behav Brain Res 2014; 266:207-15. [PMID: 24613237 DOI: 10.1016/j.bbr.2014.02.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 02/18/2014] [Accepted: 02/22/2014] [Indexed: 11/21/2022]
Abstract
Unilateral intrastriatal and intra-medial forebrain bundle injections of 6-OHDA impair the performance in a lateralised choice reaction time task. However, the extent and pattern of deficits after nigral 6-OHDA injections is less well studied, as well as the impact of training regime or the modification of various task parameters. The nigral 6-OHDA lesion resulted in impaired response accuracy and an increased time to react to and execute the response on the side contralateral to the lesion as compared to sham-lesioned controls. Pre-training of the rats on the task prior to the lesion resulted in slightly faster reaction times as well as a reduced number of preservative panel presses compared to when rats were trained after the 6-OHDA injection. When the rat had to perform a longer sustained nose poke before responding to the lateralised stimuli, the number of useable trials was reduced in both controls and 6-OHDA rats as a result of an increased number of premature withdrawals from the centre hole. This study demonstrates that rats with a nigral 6-OHDA lesion display several distinct deficits in this operant task, which are similar to those seen after striatal and bundle 6-OHDA injections. In addition, by combining pre-training with the use of a short set of holds, improved sensitivity of this task can be achieved. This improvement in sensitivity may be of advantage when exploring new therapeutic interventions for PD, where subtle but relevant changes in performance may arise.
Collapse
|
6
|
Klein A, Dunnett SB. Analysis of skilled forelimb movement in rats: the single pellet reaching test and staircase test. ACTA ACUST UNITED AC 2013; Chapter 8:Unit8.28. [PMID: 23042502 DOI: 10.1002/0471142301.ns0828s58] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Brain damage, stroke, and neurodegenerative diseases such as Parkinson's or Huntington's disease can cause severe motor deficits in skilled forelimb use in both humans and rats. These deficits are typically analyzed in a reach-to-eat paradigm. Skilled reaching in rats has been found to be a good model of human skilled reaching. Therefore, rats serve as an excellent tool to monitor the development of deficits after neurological insults or changes after medical intervention. The following protocols comprise two different tests of rat skilled reaching. The single pellet reaching test is a paradigm that involves detailed rating and analysis of qualitative aspects of the reaching movement itself. The staircase test is an objective, high-throughput reaching task that allows reaching success (number of pellets eaten) to be investigated in multiple rats at the same time. Both tests have been used extensively to investigate motor deficits and effects of treatment.
Collapse
Affiliation(s)
- Alexander Klein
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | | |
Collapse
|
7
|
Klein A, Lane EL, Dunnett SB. Brain repair in a unilateral rat model of Huntington's disease: new insights into impairment and restoration of forelimb movement patterns. Cell Transplant 2012; 22:1735-51. [PMID: 23067670 DOI: 10.3727/096368912x657918] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) produces severe neurodegeneration in the striatum leading to disabling motor impairments, including the loss of control of skilled reaching movements. Fetal GABAergic transplants can physically replace the lost striatal cells but with only partial success in functional recovery. Here, we aimed to determine the extent and quality of the repair produced by fetal cell transplantation through an in-depth analysis of reaching behavior in the quinolinic acid-lesioned rat model of HD. Control, quinolinic acid-lesioned plus sham graft, and quinolinic acid-lesioned plus graft groups of rats were assessed in skilled reaching performance prior to and following lesion surgery and 3 months following injection of 400,000 fetal whole ganglionic eminence-derived cells into the striatum. This was compared to their performance in two more rudimentary tests of motor function (the adjusting step and vibrissae-evoked hand-placing tests). Grafted rats demonstrated a significant improvement in reaching success rate (graft +59%, shamTX +3%). Importantly, the quality of reaching behavior, including all components of the movement, was fully restored with no identifiable differences in the normal behavior shown by control rats. Postmortem immunohistochemical examination verified the survival of large intrastriatal grafts, and Fluoro-Gold tracing indicated appropriate outgrowth to the globus pallidus. Our study illustrates for the first time the detailed analysis of qualitative improvement of motor function following brain repair in a rat model of HD. The results demonstrate significant improvements not only in gross movements but also in the skilled motor patterns lost during HD. Fetal GABAergic cell transplantation showed a demonstrable ability to restore motor function to near normal levels, such that there were few differences from intact control animals, an effect not observed in standard tests of motor function.
Collapse
Affiliation(s)
- Alexander Klein
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | | | | |
Collapse
|
8
|
Long term behavioral effects of functional dopaminergic neurons generated from human neural stem cells in the rat 6-OH-DA Parkinson's disease model. Effects of the forced expression of BCL-X(L). Behav Brain Res 2012; 232:225-32. [PMID: 22537773 DOI: 10.1016/j.bbr.2012.04.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/30/2012] [Accepted: 04/10/2012] [Indexed: 02/04/2023]
Abstract
Parkinson's disease (PD) motor symptoms are caused by the progressive degeneration of ventral mesencephalic (VM) dopaminergic neurons (DAn) in the Substantia Nigra pars compacta (SNpc). Cell replacement therapy for PD is based on the concept that the implantation of DAn in the striatum can functionally restore the dopamine levels lost in the disease. In the current study we have used an immortalized human VM neural stem cell line (hVM1) that generates DAn with the A9 phenotype. We have previously found that the forced expression of Bcl-X(L) in these cells enhances DAn generation and improves, short-term, d-amphetamine-induced rotation after transplantation in the 6-OH-DA rat model of PD 2-month post-grafting. Since functional maturation of human A9 DAn in vivo requires long survival times, in the present study we investigated the behavioral amelioration induced by the transplantation of these precursors (naïve and Bcl-X(L)-modified) in the striatum of Parkinsonian rats for up to 5 months. The main findings observed are an improvement on drug-induced behaviour and importantly, in spontaneous behavior tests for both cell-transplanted groups. Finally, we have also tested whether the grafts could ameliorate cognitive performance in PD, in addition to motor deficits. Significant difference was observed for T-maze alternation test in the cell-transplanted animals as compared to sham operated ones. To our knowledge, this is the first report showing an amelioration in spontaneous motor behavior and in cognitive performance in Parkinsonian animals after receiving human VM neural stem cell grafts. Histological studies confirmed that the grafts generated mature dopaminergic cells.
Collapse
|
9
|
Klein A, Sacrey LAR, Whishaw IQ, Dunnett SB. The use of rodent skilled reaching as a translational model for investigating brain damage and disease. Neurosci Biobehav Rev 2012; 36:1030-42. [PMID: 22227413 DOI: 10.1016/j.neubiorev.2011.12.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 11/26/2022]
Abstract
Neurological diseases, including Parkinson's disease, Huntington's disease, and brain damage caused by stroke, cause severe motor impairments. Deficits in hand use are one of the most debilitating motor symptoms and include impairments in body posture, forelimb movements, and finger shaping for manipulating objects. Hand movements can be formally studied using reaching tasks, including the skilled reaching task, or reach-to-eat task. For skilled reaching, a subject reaches for a small food item, grasps it with the fingers, and places it in the mouth for eating. The human movement and its associated deficits can be modeled by experimental lesions to the same systems in rodents which in turn provide an avenue for investigating treatments of human impairments. Skilled reaching movements are scored using three methods: (1) end point measures of attempts and success, (2) biometric measures, and (3) movement element rating scales derived from formal descriptions of movement. The striking similarities between human and rodent reaching movements allow the analysis of the reach-to-eat movement to serve as a powerful tool to generalize preclinical research to clinical conditions.
Collapse
Affiliation(s)
- Alexander Klein
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK.
| | | | | | | |
Collapse
|
10
|
Skilled motor control for the preclinical assessment of functional deficits and recovery following nigral and striatal cell transplantation. PROGRESS IN BRAIN RESEARCH 2012. [DOI: 10.1016/b978-0-444-59575-1.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
11
|
Fielding SA, Brooks SP, Klein A, Bayram-Weston Z, Jones L, Dunnett SB. Profiles of motor and cognitive impairment in the transgenic rat model of Huntington's disease. Brain Res Bull 2011; 88:223-36. [PMID: 21963415 DOI: 10.1016/j.brainresbull.2011.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 08/30/2011] [Accepted: 09/17/2011] [Indexed: 01/01/2023]
Abstract
The transgenic Huntington's disease (tgHD) rat strain provides a well regarded transgenic animal model of Huntington's disease, offering the prospect for a more detailed functional analysis in rats, along with neurological and therapeutic interventions, than is possible in the more widely available mouse models. In the present experiments, we compare the performance of heterozygous and homozygous tgHD rats against wildtype littermates on a range of motor and cognitive assessments in five separate cohorts of rats between 8 and 22 months of age. Male but not female heterozygous tgHD rats exhibit modest motor deficits in rotarod and staircase reaching tests, whereas most cognitive tests (including object recognition, exploration of novelty, delayed alternation, choice reaction time, and serial implicit learning tasks) revealed at best small or inconsistent deficits, in homozygous as well as heterozygous animals, up to 22 months of age. Thus, although we have observed modest but clear-cut deficits in motor phenotype, with a sex difference in line with previous reports, we have not established a robust cognitive impairment in this strain on a range of tasks sensitive to frontostriatal function, as required for testing novel (symptomatic, protective or reparative) therapeutics in a robust, valid, animal model of human Huntington's disease.
Collapse
Affiliation(s)
- Steven A Fielding
- The Brain Repair Group, School of Biosciences, Cardiff University, UK
| | | | | | | | | | | |
Collapse
|
12
|
Karl JM, Whishaw IQ. Rodent Skilled Reaching for Modeling Pathological Conditions of the Human Motor System. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-1-61779-298-4_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
13
|
Cordeiro KK, Jiang W, Papazoglou A, Tenório SB, Döbrössy M, Nikkhah G. Graft-mediated functional recovery on a skilled forelimb use paradigm in a rodent model of Parkinson's disease is dependent on reward contingency. Behav Brain Res 2010; 212:187-95. [DOI: 10.1016/j.bbr.2010.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 04/01/2010] [Accepted: 04/07/2010] [Indexed: 11/30/2022]
|
14
|
Karl JM, Sacrey LAR, McDonald RJ, Whishaw IQ. Intact intracortical microstimulation (ICMS) representations of rostral and caudal forelimb areas in rats with quinolinic acid lesions of the medial or lateral caudate-putamen in an animal model of Huntington's disease. Brain Res Bull 2008; 77:42-8. [DOI: 10.1016/j.brainresbull.2008.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/17/2008] [Accepted: 04/23/2008] [Indexed: 10/22/2022]
|
15
|
Alaverdashvili M, Leblond H, Rossignol S, Whishaw IQ. Cineradiographic (video X-ray) analysis of skilled reaching in a single pellet reaching task provides insight into relative contribution of body, head, oral, and forelimb movement in rats. Behav Brain Res 2008; 192:232-47. [PMID: 18514337 DOI: 10.1016/j.bbr.2008.04.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 04/08/2008] [Accepted: 04/14/2008] [Indexed: 11/24/2022]
Abstract
The forelimb movements (skilled reaching) used by rats to reach for a single food pellet to place into the mouth have been used to model many neurological conditions. They have been described as a sequence of oppositions of head-pellet, paw-pellet and pellet-mouth that can be described as movements of the distal portion of body segments in relation to their fixed proximal joints. Movement scoring is difficult, however, because the location and movement of body segments is estimated through the overlying fur and skin, which is pliable and partially obscures movement. Using moderately high-speed cineradiographic filming from lateral, dorsal, and frontal perspectives, the present study describes how forelimb and skeletal bones move during the skilled reaching act. The analysis indicates that: (i) head movements for orienting to food, enabled by the vertical orientation of the rostral spinal cord, are mainly independent of trunk movement, (ii) skilled reaching consists of a sequence of upper arm and extremity movements each involving a number of concurrent limb segment and joint movements and (iii) food pellets are retrieved from the paw using either the incisors and/or tongue. The findings are discussed in relation to the idea that X-ray cinematography is valuable tool for assisting descriptive analysis and can contribute to understanding general principles of the relations between whole body, head, oral, and upper extremity movement.
Collapse
Affiliation(s)
- Mariam Alaverdashvili
- Department of Neuroscience, Canadian Centre for Behavioral Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada.
| | | | | | | |
Collapse
|
16
|
Whishaw IQ, Zeeb F, Erickson C, McDonald RJ. Neurotoxic lesions of the caudate-putamen on a reaching for food task in the rat: acute sensorimotor neglect and chronic qualitative motor impairment follow lateral lesions and improved success follows medial lesions. Neuroscience 2007; 146:86-97. [PMID: 17346897 DOI: 10.1016/j.neuroscience.2007.01.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 12/12/2006] [Accepted: 01/15/2007] [Indexed: 11/24/2022]
Abstract
Reaching for food, or skilled reaching, is used as a test of basal ganglia function in preclinical studies as well as studies of human neurological conditions. Although changes in the end-point measure of success document the effects of neurotoxic cellular damage to the caudate-putamen and its treatment in rodents, there has been no examination of the cause of change in success after neurotoxic lesions of the striatum. This objective was addressed in the present study, in which rats trained to reach for single food pellets with one forelimb, received contralateral quinolinic acid or ibotenic acid lesions of the medial and lateral caudate-putamen. Over 21 postsurgical days, reaching performance was scored for success and qualitative changes in movement elements were examined using frame-by-frame video analysis. In the acute postoperative period, extending over 3 to 4 days, the rats with lateral lesions transported their forelimb and grasped the food, but then ignored the food and did not withdraw their limb to their mouth. After recovery of the withdrawal movement, the rats displayed chronic qualitative impairments in the rotatory movements of aiming, pronating, and supinating the forepaw. Medial quinolinic lesions improved success relative to control rats and did not change qualitative aspects of limb movement. The acute dissociation between transport and withdrawal, the chronic qualitative changes in movement elements, and the differential effect of medial and lateral injury on success, support a complex contribution of the caudate-putamen to skilled reaching that includes sensorimotor neglect, and quantitative and qualitative motoric changes.
Collapse
Affiliation(s)
- I Q Whishaw
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4.
| | | | | | | |
Collapse
|
17
|
Gharbawie OA, Auer RN, Whishaw IQ. Subcortical middle cerebral artery ischemia abolishes the digit flexion and closing used for grasping in rat skilled reaching. Neuroscience 2006; 137:1107-18. [PMID: 16352401 DOI: 10.1016/j.neuroscience.2005.10.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2005] [Revised: 10/18/2005] [Accepted: 10/20/2005] [Indexed: 10/25/2022]
Abstract
That rats reach for and grasp a food item using a single paw has prompted their use in neurobiological studies of skilled movements and modeling neural injury including middle cerebral artery stroke. Although motor system lesions have been shown to disrupt various qualitative aspects of the transport of a limb to a food target and withdrawal of the limb with the food, no lesion has been found to abolish digit flexion for grasping. Here, rats received unilateral transient middle cerebral artery ischemia that was restricted mainly to subcortical tissue of the forebrain (caudate-putamen, globus pallidus, and associated fibers) or a sham operation. Both paws were later trained and evaluated on skilled reaching using a rating scale for digit use. Middle cerebral artery rats did not flex and close their digits to grasp food when using their contralateral-to-lesion limb. The grasp impairment was not due to a failure to learn the task as middle cerebral artery rats used the ipsilateral limb as successfully as control rats and they were reinforced for reaching by raking food into the reaching box using an open paw. The impairment was also not due to an inability to move the digits, as they were flexed and closed in other phases of the reach. The paradigm should prove useful for further studies of rehabilitation in relation to the idea that digit closure may be controlled by the joint action of a number of neural systems that converge in the basal ganglia.
Collapse
Affiliation(s)
- O A Gharbawie
- Department of Psychology and Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4.
| | | | | |
Collapse
|
18
|
Döbrössy MD, Dunnett SB. Environmental enrichment affects striatal graft morphology and functional recovery. Eur J Neurosci 2004; 19:159-68. [PMID: 14750974 DOI: 10.1111/j.1460-9568.2004.03105.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Environmental conditions and behavioural experience can affect neuronal function and morphology. It is less well known whether such factors also influence the growth, integration and functional recovery provided by neural grafts placed within the damaged brain. Here we report on the effects of differential housing conditions on striatal graft morphology and functional recovery after striatal lesions. Rats were pretrained on a skilled bilateral forelimb task, the staircase test, and lesioned unilaterally in the lateral dorsal striatum with quinolinic acid. One group of lesioned animals was given suspension grafts of E15 whole ganglionic eminence implanted into the lesioned striatum. Following transplantation, the animals were housed either in standard cages (four per cage) or in enriched environment housing conditions (10 per cage) with tunnels, ladders and increased living space available for exploration, social interaction and play. The differentially housed animals were retested on the skilled staircase test at two separate time points. Repeated testing, environmental enrichment and transplantation positively influenced behavioural recovery. Partial recovery was observed bilaterally amongst the grafted animals in both housing conditions. Nevertheless, the grafted animals housed in the enriched environment performed significantly better in the final test compared with all of the other experimental groups. The grafts survived equally well under both housing conditions but the grafts of animals housed in the enriched environment contained larger projection neurons and were somewhat better reinnervated by dopaminergic afferents. An increased level of striatal brain-derived neurotrophic factor was observed in the control animals housed under the enriched compared with the standard conditions. The results indicate that an enriched environment can affect both graft function and graft morphology through as yet unknown mechanisms.
Collapse
Affiliation(s)
- Máté D Döbrössy
- Brain Repair Group, School of Biosciences, Cardiff University, Museum Avenue Box 911, Cardiff CF10 3US, UK.
| | | |
Collapse
|
19
|
Whittemore SR, Strömberg I. Emerging Strategies in Neural Transplantation and Repair: A Special Section Based on the INTR-8 Conference. Cell Transplant 2003; 12:199-200. [PMID: 28853927 DOI: 10.3727/000000003108746731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Scott R Whittemore
- Kentucky Spinal Cord Injury Research Center Department of Neurological Surgery, MDR616 University of Louisville School of Medicine
| | | |
Collapse
|