1
|
Kumari K, Tandon S, Ghosh S, Baligar P. Gelatin scaffold ameliorates proliferation & stem cell differentiation into the hepatic like cell and support liver regeneration in partial-hepatectomized mice model. Biomed Mater 2023; 18:065022. [PMID: 37860885 DOI: 10.1088/1748-605x/ad04fd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
Stem cell-based tissue engineering is an emerging tool for developing functional tissues of choice. To understand pluripotency and hepatic differentiation of mouse embryonic stem cells (mESCs) on a three-dimensional (3D) scaffold, we established an efficient approach for generating hepatocyte-like cells (HLCs) from hepatoblast cells. We developed porous and biodegradable scaffold, which was stimulated with exogenous growth factors and investigated stemness and differentiation capacity of mESCs into HLCs on the scaffoldin-vitro. In animal studies, we had cultured mESCs-derived hepatoblast-like cells on the scaffold and then, transplanted them into the partially hepatectomized C57BL/6 male mice model to evaluate the effect of gelatin scaffold on hepatic regeneration. The 3D culture system allowed maintenance of stemness properties in mESCs. The step-wise induction of mESCs with differentiation factors leads to the formation of HLCs and expressed liver-specific genes, including albumin, hepatocyte nucleic factor 4 alpha, and cytokeratin 18. In addition, cells also expressed Ki67, indicating cells are proliferating. The secretome showed expression of albumin, urea, creatinine, alanine transaminase, and aspartate aminotransferase. However, the volume of the excised liver which aids regeneration has not been studied. Our results indicate that hepatoblast cells on the scaffold implanted in PH mouse indicates that these cells efficiently differentiate into HLCs and cholangiocytes, forming hepatic lobules with central and portal veins, and bile duct-like structures with neovascularization. The gelatin scaffold provides an efficient microenvironment for liver differentiation and regeneration bothin-vitroandin-vivo. These hepatoblasts cells would be a valuable source for 3D liver tissue engineering/transplantation in liver diseases.
Collapse
Affiliation(s)
- Kshama Kumari
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | | | - Sourabh Ghosh
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Prakash Baligar
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
2
|
Alka, Verma A, Mishra N, Singh N, Singh P, Nisha R, Pal RR, Saraf SA. Polymeric Gel Scaffolds and Biomimetic Environments for Wound Healing. Curr Pharm Des 2023; 29:3221-3239. [PMID: 37584354 DOI: 10.2174/1381612829666230816100631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 07/14/2023] [Indexed: 08/17/2023]
Abstract
Infected wounds that do not heal are a worldwide problem that is worsening, with more people dying and more money being spent on care. For any disease to be managed effectively, its root cause must be addressed. Effective wound care becomes a bigger problem when various traditional wound healing methods and products may not only fail to promote good healing. Still, it may also hinder the healing process, causing wounds to stay open longer. Progress in tissue regeneration has led to developing three-dimensional scaffolds (3D) or constructs that can be leveraged to facilitate cell growth and regeneration while preventing infection and accelerating wound healing. Tissue regeneration uses natural and fabricated biomaterials that encourage the growth of tissues or organs. Even though the clinical need is urgent, the demand for polymer-based therapeutic techniques for skin tissue abnormalities has grown quickly. Hydrogel scaffolds have become one of the most imperative 3D cross-linked scaffolds for tissue regeneration because they can hold water perfectly and are porous, biocompatible, biodegradable, and biomimetic. For damaged organs or tissues to heal well, the porosity topography of the natural extracellular matrix (ECM) should be imitated. This review details the scaffolds that heal wounds and helps skin tissue to develop. After a brief overview of the bioactive and drug-loaded polymeric hydrogels, the discussion moves on to how the scaffolds are made and what they are made of. It highlights the present uses of in vitro and in-vivo employed biomimetic scaffolds. The prospects of how well bioactiveloaded hydrogels heal wounds and how nanotechnology assists in healing and regeneration have been discussed.
Collapse
Affiliation(s)
- Alka
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Abhishek Verma
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Raquibun Nisha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
- National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| |
Collapse
|
3
|
Miyazawa M, Aikawa M, Takashima J, Kobayashi H, Ohnishi S, Ikada Y. Pitfalls and promises of bile duct alternatives: A narrative review. World J Gastroenterol 2022; 28:5707-5722. [PMID: 36338889 PMCID: PMC9627420 DOI: 10.3748/wjg.v28.i39.5707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/18/2022] [Accepted: 09/23/2022] [Indexed: 02/06/2023] Open
Abstract
Biliodigestive anastomosis between the extrahepatic bile duct and the intestine for bile duct disease is a gastrointestinal reconstruction that abolishes duodenal papilla function and frequently causes retrograde cholangitis. This chronic inflammation can cause liver dysfunction, liver abscess, and even bile duct cancer. Although research has been conducted for over 100 years to directly repair bile duct defects with alternatives, no bile duct substitute (BDS) has been developed. This narrative review confirms our understanding of why bile duct alternatives have not been developed and explains the clinical applicability of BDSs in the near future. We searched the PubMed electronic database to identify studies conducted to develop BDSs until December 2021 and identified studies in English. Two independent reviewers reviewed studies on large animals with 8 or more cases. Four types of BDSs prevail: Autologous tissue, non-bioabsorbable material, bioabsorbable material, and others (decellularized tissue, 3D-printed structures, etc.). In most studies, BDSs failed due to obstruction of the lumen or stenosis of the anastomosis with the native bile duct. BDS has not been developed primarily because control of bile duct wound healing and regeneration has not been elucidated. A BDS expected to be clinically applied in the near future incorporates a bioabsorbable material that allows for regeneration of the bile duct outside the BDS.
Collapse
Affiliation(s)
- Mitsuo Miyazawa
- Department of Surgery, Teikyo University Mizonokuch Hospital, Kanagawa 213-8507, Japan
| | - Masayasu Aikawa
- Department of Surgery, Saitama Medical University International Medical Center, Saitama 350-1298, Japan
| | - Junpei Takashima
- Department of Surgery, Teikyo University Mizonokuch Hospital, Kanagawa 213-8507, Japan
| | - Hirotoshi Kobayashi
- Department of Surgery, Teikyo University Mizonokuch Hospital, Kanagawa 213-8507, Japan
| | - Shunsuke Ohnishi
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Yoshito Ikada
- Department of Bioenvironmental Medicine, Nara Medical University, Nara 634-8521, Japan
| |
Collapse
|
4
|
Shao B, Qin YF, Ren SH, Peng QF, Qin H, Wang ZB, Wang HD, Li GM, Zhu YL, Sun CL, Zhang JY, Li X, Wang H. Structural and Temporal Dynamics of Mesenchymal Stem Cells in Liver Diseases From 2001 to 2021: A Bibliometric Analysis. Front Immunol 2022; 13:859972. [PMID: 35663940 PMCID: PMC9160197 DOI: 10.3389/fimmu.2022.859972] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/20/2022] [Indexed: 12/14/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have important research value and broad application prospects in liver diseases. This study aims to comprehensively review the cooperation and influence of countries, institutions, authors, and journals in the field of MSCs in liver diseases from the perspective of bibliometrics, evaluate the clustering evolution of knowledge structure, and discover hot trends and emerging topics. Methods The articles and reviews related to MSCs in liver diseases were retrieved from the Web of Science Core Collection using Topic Search. A bibliometric study was performed using CiteSpace and VOSviewer. Results A total of 3404 articles and reviews were included over the period 2001-2021. The number of articles regarding MSCs in liver diseases showed an increasing trend. These publications mainly come from 3251 institutions in 113 countries led by China and the USA. Li L published the most papers among the publications, while Pittenger MF had the most co-citations. Analysis of the most productive journals shows that most are specialized in medical research, experimental medicine and cell biology, and cell & tissue engineering. The macroscopical sketch and micro-representation of the whole knowledge field are realized through co-citation analysis. Liver scaffold, MSC therapy, extracellular vesicle, and others are current and developing areas of the study. The keywords "machine perfusion", "liver transplantation", and "microRNAs" also may be the focus of new trends and future research. Conclusions In this study, bibliometrics and visual methods were used to review the research of MSCs in liver diseases comprehensively. This paper will help scholars better understand the dynamic evolution of the application of MSCs in liver diseases and point out the direction for future research.
Collapse
Affiliation(s)
- Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ya-Fei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shao-Hua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiu-Feng Peng
- Department of Respiratory and Critical Care Medicine, Tianjin Fourth Central Hospital, Tianjin, China
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhao-Bo Wang
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hong-da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Guang-Ming Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang-Lin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Cheng-Lu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-Yi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
5
|
Decellularized caprine liver-derived biomimetic and pro-angiogenic scaffolds for liver tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:939-948. [DOI: 10.1016/j.msec.2019.01.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 12/07/2018] [Accepted: 01/08/2019] [Indexed: 12/18/2022]
|
6
|
Pellegata AF, Tedeschi AM, De Coppi P. Whole Organ Tissue Vascularization: Engineering the Tree to Develop the Fruits. Front Bioeng Biotechnol 2018; 6:56. [PMID: 29868573 PMCID: PMC5960678 DOI: 10.3389/fbioe.2018.00056] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/23/2018] [Indexed: 12/15/2022] Open
Abstract
Tissue engineering aims to regenerate and recapitulate a tissue or organ that has lost its function. So far successful clinical translation has been limited to hollow organs in which rudimental vascularization can be achieved by inserting the graft into flaps of the omentum or muscle fascia. This technique used to stimulate vascularization of the graft takes advantage of angiogenesis from existing vascular networks. Vascularization of the engineered graft is a fundamental requirement in the process of engineering more complex organs, as it is crucial for the efficient delivery of nutrients and oxygen following in-vivo implantation. To achieve vascularization of the organ many different techniques have been investigated and exploited. The most promising results have been obtained by seeding endothelial cells directly into decellularized scaffolds, taking advantage of the channels remaining from the pre-existing vascular network. Currently, the main hurdle we need to overcome is achieving a fully functional vascular endothelium, stable over a long time period of time, which is engineered using a cell source that is clinically suitable and can generate, in vitro, a yield of cells suitable for the engineering of human sized organs. This review will give an overview of the approaches that have recently been investigated to address the issue of vascularization in the field of tissue engineering of whole organs, and will highlight the current caveats and hurdles that should be addressed in the future.
Collapse
Affiliation(s)
- Alessandro F Pellegata
- Stem Cells and Regenerative Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Alfonso M Tedeschi
- Stem Cells and Regenerative Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,SNAPS, Great Ormond Street Hospital for Children NHS Foundation Trust, University College London, London, United Kingdom
| |
Collapse
|
7
|
de Lazari MGT, Pereira LX, Viana CTR, Orellano LAA, de Almeida SA, Vasconcelos AC, Ribeiro GB, Couto LC, Andrade SP, Campos PP. Induction of liver proliferation using a polymeric platform in mice. Life Sci 2018; 193:226-233. [PMID: 29097158 DOI: 10.1016/j.lfs.2017.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/17/2017] [Accepted: 10/29/2017] [Indexed: 11/25/2022]
Abstract
AIMS Currently, animal models of liver regeneration are based on extensive lesions of the native organ and on cellular approaches using biomaterials to host growth factors and extracellular components to create artificial liver systems. We report a polymeric biological platform, minimally invasive, that induced sequential proliferation of liver parenchyma inside the scaffold in mice. MAIN METHODS Porous discs of polyether-polyurethane were surgically placed under the left liver lobe and removed at days 4, 8, 12 and 25 after implantation. No exogenous growth factors or extracellular matrix components were added to the scaffold. Histological analysis of the implants was performed to identify hepatocytes, liver vascular structures and bile ducts in the newly formed tissue. In addition, systemic markers for hepatic function were determined. KEY FINDINGS This biohybrid device provided a scaffold that was gradually filled with parenchymal and non-parenchymal liver tissue as detected by histological analysis. At day 4, the pores of the scaffold were filled with inflammatory cells and spindled-shaped like fibroblasts, and extracellular matrix components. At day 8, hepatocytes clusters, central lobular hepatic veins, portal space containing arteries, veins and biliary ducts were detected. By days 12 and 25 a liver-like structure filled 2/3 of the scaffold. Its organization resembled that of a mature liver. Serum concentration of ALT increased three-fold initially after implantation, returning gradually to control levels. SIGNIFICANCE The plain synthetic scaffold (without addition of exogenous molecules) placed under the intact left liver lobe exhibits the potential to investigate physiological mechanisms that regulate liver parenchyma proliferation.
Collapse
Affiliation(s)
| | - Luciana Xavier Pereira
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso Tarso Rodrigues Viana
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Laura Alejandra Ariza Orellano
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Simone Aparecida de Almeida
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anilton Cesar Vasconcelos
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Giani Barbosa Ribeiro
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leticia Chinait Couto
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Silvia Passos Andrade
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Peixoto Campos
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Teratani T, Quinn G, Yamamoto Y, Sato T, Yamanokuchi H, Asari A, Ochiya T. Long-Term Maintenance of Liver-Specific Functions in Cultured ES Cell-Derived Hepatocytes with Hyaluronan Sponge. Cell Transplant 2017; 14:629-35. [PMID: 16405073 DOI: 10.3727/000000005783982611] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study investigated the three-dimensional culture of hepatocytes differentiated from mouse embryonic stem (ES) cells with a porous hyaluronan (HA) sponge support. Hepatocytes were immobilized within the pores of the support. Spheroids could be observed within the support, each containing between 20 and 50 hepatocytes. To examine the liver-specific functions of the hepatocytes in the culture, the levels of albumin secreted into the medium were analyzed. The secretion of albumin was stable over the course of 32 days, longer than that in both conventional monolayer and collagen sponge cultures. To elucidate further the liver-specific functions of hepatocytes embedded in the HA sponge, metabolic activities of the hepatocytes were examined for their ability to eliminate ammonia from culture media and the synthesis of urea nitrogen. While rates of ammonia removal and urea nitrogen synthesis were similar to those in both conventional monolayer and in collagen sponge cultures, these functions were maintained for longer duration in cells embedded in the HA sponge. These results demonstrate that the porous HA sponge is an effective support for the in vitro culture of ES-derived hepatocytes used for both basic and applied studies for cell transplantation.
Collapse
Affiliation(s)
- Takumi Teratani
- National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Borlongan CV, Yu G, Matsukawa N, Yasuhara T, Hara K, Xu L. Article Commentary: Cell Transplantation: Stem Cells in the Spotlight. Cell Transplant 2017; 14:519-526. [DOI: 10.3727/000000005783982774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Cesar V. Borlongan
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Guolong Yu
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Noriyuki Matsukawa
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Takao Yasuhara
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Koichi Hara
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Lin Xu
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| |
Collapse
|
10
|
Sanberg PR, Greene-Zavertnik C, Davis CD. Article Commentary: Cell Transplantation: The Regenerative Medicine Journal. A Biennial Analysis of Publications. Cell Transplant 2017; 12:815-825. [DOI: 10.3727/000000003771000165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612
| | - Cathryn Greene-Zavertnik
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612
| | - Cyndy D. Davis
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612
| |
Collapse
|
11
|
Bishi DK, Mathapati S, Venugopal JR, Guhathakurta S, Cherian KM, Verma RS, Ramakrishna S. A Patient-Inspired Ex Vivo Liver Tissue Engineering Approach with Autologous Mesenchymal Stem Cells and Hepatogenic Serum. Adv Healthc Mater 2016; 5:1058-70. [PMID: 26890619 DOI: 10.1002/adhm.201500897] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/27/2015] [Indexed: 01/07/2023]
Abstract
Design and development of ex vivo bioengineered liver tissue substitutes intended for subsequent in vivo implantation has been considered therapeutically relevant to treat many liver diseases that require whole-organ replacement on a long-term basis. The present study focus on patient-inspired ex vivo liver tissue engineering strategy to generate hepatocyte-scaffold composite by combining bone marrow mesenchymal stem cells (BMSCs) derived from cardiac failure patients with secondary hyperbilirubinemia as primers of hepatic differentiation and hepatocyte growth factor (HGF)-enriched sera from same individuals as hepatic inducer. A biodegradable and implantable electrospun fibrous mesh of poly-l-lactic acid (PLLA) and gelatin is used as supporting matrix (average fiber diameter = 285 ± 64 nm, porosity = 81 ± 4%, and average pore size = 1.65 ± 0.77 μm). The fibrous mesh supports adhesion, proliferation, and hepatic commitment of patient-derived BMSCs of adequate stemness using HGF-enriched sera generating metabolically competent hepatocyte-like cells, which is comparable to the hepatic induction with defined recombinant growth factor cocktail. The observed results confirm the combinatorial effects of nanofiber topography and biochemical cues in guiding hepatic specification of BMSCs. The fibrous mesh-hepatocyte construct developed in this study using natural growth factors and BMSCs of same individual is promising for future therapeutic applications in treating damaged livers.
Collapse
Affiliation(s)
- Dillip K. Bishi
- Centre for Nanofibers and Nanotechnology; E3 # 05-12; Nanoscience and Nanotechnology Initiative; National University of Singapore; 2 Engineering Drive 3 117576 Singapore
- Stem Cells and Tissue Engineering Laboratory; International Centre for Cardiothoracic and Vascular Diseases; Frontier Lifeline Hospital; Chennai 600101 India
- Stem Cells and Molecular Biology Laboratory; Department of Biotechnology; Indian Institute of Technology Madras; Chennai 600036 India
| | - Santosh Mathapati
- Centre for Nanofibers and Nanotechnology; E3 # 05-12; Nanoscience and Nanotechnology Initiative; National University of Singapore; 2 Engineering Drive 3 117576 Singapore
- Stem Cells and Tissue Engineering Laboratory; International Centre for Cardiothoracic and Vascular Diseases; Frontier Lifeline Hospital; Chennai 600101 India
- Stem Cells and Molecular Biology Laboratory; Department of Biotechnology; Indian Institute of Technology Madras; Chennai 600036 India
| | - Jayarama R. Venugopal
- Centre for Nanofibers and Nanotechnology; E3 # 05-12; Nanoscience and Nanotechnology Initiative; National University of Singapore; 2 Engineering Drive 3 117576 Singapore
| | - Soma Guhathakurta
- Department of Engineering Design; Indian Institute of Technology Madras; Chennai India
| | - Kotturathu M. Cherian
- Stem Cells and Tissue Engineering Laboratory; International Centre for Cardiothoracic and Vascular Diseases; Frontier Lifeline Hospital; Chennai 600101 India
| | - Rama S. Verma
- Stem Cells and Molecular Biology Laboratory; Department of Biotechnology; Indian Institute of Technology Madras; Chennai 600036 India
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology; E3 # 05-12; Nanoscience and Nanotechnology Initiative; National University of Singapore; 2 Engineering Drive 3 117576 Singapore
| |
Collapse
|
12
|
Jiang WC, Cheng YH, Yen MH, Chang Y, Yang VW, Lee OK. Cryo-chemical decellularization of the whole liver for mesenchymal stem cells-based functional hepatic tissue engineering. Biomaterials 2014; 35:3607-17. [PMID: 24462361 DOI: 10.1016/j.biomaterials.2014.01.024] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/08/2014] [Indexed: 12/12/2022]
Abstract
Liver transplantation is the ultimate treatment for severe hepatic failure to date. However, the limited supply of donor organs has severely hampered this treatment. So far, great potentials of using mesenchymal stem cells (MSCs) to replenish the hepatic cell population have been shown; nevertheless, there still is a lack of an optimal three-dimensional scaffold for generation of well-transplantable hepatic tissues. In this study, we utilized a cryo-chemical decellularization method which combines physical and chemical approach to generate acellular liver scaffolds (ALS) from the whole liver. The produced ALS provides a biomimetic three-dimensional environment to support hepatic differentiation of MSCs, evidenced by expression of hepatic-associated genes and marker protein, glycogen storage, albumin secretion, and urea production. It is also found that hepatic differentiation of MSCs within the ALS is much more efficient than two-dimensional culture in vitro. Importantly, the hepatic-like tissues (HLT) generated by repopulating ALS with MSCs are able to act as functional grafts and rescue lethal hepatic failure after transplantation in vivo. In summary, the cryo-chemical method used in this study is suitable for decellularization of liver and create acellular scaffolds that can support hepatic differentiation of MSCs and be used to fabricate functional tissue-engineered liver constructs.
Collapse
Affiliation(s)
- Wei-Cheng Jiang
- Institute of Biomedical Engineering, National Yang-Ming University, Taiwan; Stem Cell Research Center, National Yang-Ming University, Taiwan.
| | - Yu-Hao Cheng
- Faculty of Medicine, National Yang-Ming University, Taiwan.
| | - Meng-Hua Yen
- Stem Cell Research Center, National Yang-Ming University, Taiwan.
| | - Yin Chang
- Institute of Biomedical Engineering, National Yang-Ming University, Taiwan.
| | - Vincent W Yang
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY, USA.
| | - Oscar K Lee
- Department of Medical Research & Education, Taipei Veterans General Hospital, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taiwan.
| |
Collapse
|
13
|
Harrington H, Rose FRAJ, Aylott JW, Ghaemmaghami AM. Self-reporting scaffolds for 3-dimensional cell culture. J Vis Exp 2013:e50608. [PMID: 24299732 DOI: 10.3791/50608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Culturing cells in 3D on appropriate scaffolds is thought to better mimic the in vivo microenvironment and increase cell-cell interactions. The resulting 3D cellular construct can often be more relevant to studying the molecular events and cell-cell interactions than similar experiments studied in 2D. To create effective 3D cultures with high cell viability throughout the scaffold the culture conditions such as oxygen and pH need to be carefully controlled as gradients in analyte concentration can exist throughout the 3D construct. Here we describe the methods of preparing biocompatible pH responsive sol-gel nanosensors and their incorporation into poly(lactic-co-glycolic acid) (PLGA) electrospun scaffolds along with their subsequent preparation for the culture of mammalian cells. The pH responsive scaffolds can be used as tools to determine microenvironmental pH within a 3D cellular construct. Furthermore, we detail the delivery of pH responsive nanosensors to the intracellular environment of mammalian cells whose growth was supported by electrospun PLGA scaffolds. The cytoplasmic location of the pH responsive nanosensors can be utilized to monitor intracellular pH (pHi) during ongoing experimentation.
Collapse
|
14
|
Masuzaki R, Zhao SR, Csizmadia E, Yannas I, Karp SJ. Scar formation and lack of regeneration in adult and neonatal liver after stromal injury. Wound Repair Regen 2012; 21:122-30. [PMID: 23228176 DOI: 10.1111/j.1524-475x.2012.00868.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 09/25/2012] [Indexed: 11/28/2022]
Abstract
Known as a uniquely regenerative tissue, the liver shows a remarkable capacity to heal without scarring after many types of acute injury. In contrast, during chronic liver disease, the liver responds with fibrosis, which can progress to cirrhosis and ultimately liver failure. The cause of this shift from a nonfibrotic to a fibrotic response is unknown. We hypothesized that stromal injury is a key event that prevents restoration of normal liver architecture. To test this, we developed a model of stromal injury using a surgical incision through the normal liver in adult and neonatal mice. This injury produces minimal cell death but locally complete stromal (extracellular matrix) disruption. The adult liver responds with inflammation and stellate cell activation, culminating in fibrosis characterized by collagen deposition. This sequence of events is remarkably similar to the fibrotic response leading to cirrhosis. Studies in neonates reveal a similar fibrotic response to a stromal injury. These findings suggest that extracellular matrix disruption leads not to regeneration but rather to scar, similar to other mammalian organs. These findings may shed light on the pathogenesis of chronic liver disease, and suggest therapeutic strategies.
Collapse
Affiliation(s)
- Ryota Masuzaki
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232-4761, USA
| | | | | | | | | |
Collapse
|
15
|
Hammond JS, Lobo DN. Emerging roles for biomaterials in the treatment of liver disease. Expert Rev Med Devices 2012; 9:181-8. [PMID: 22404778 DOI: 10.1586/erd.11.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review explores potential roles for biomaterials in the field of liver surgery and hepatology. The studies reviewed are presented in three sections. The first section discusses liver regeneration and strategies to modulate it. The second section outlines the pathophysiology of liver inflammation and fibrosis and highlights novel therapeutic targets. The final section summarises the current challenges in liver surgery and discusses how biomaterials may be used to address these challenges and focuses on early translational applications for biomaterials for drug delivery and liver surgery.
Collapse
Affiliation(s)
- John S Hammond
- Division of Gastrointestinal Surgery, Nottingham Digestive Diseases Centre NIHR Biomedical Research Unit, Nottingham University Hospitals, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | | |
Collapse
|
16
|
Scaffolds containing growth factors and extracellular matrix induce hepatocyte proliferation and cell migration in normal and regenerating rat liver. J Hepatol 2011; 54:279-87. [PMID: 21126791 DOI: 10.1016/j.jhep.2010.06.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 06/13/2010] [Accepted: 06/22/2010] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Intrahepatic drug delivery from implantable scaffolds is being developed as a strategy to modulate growth and enhance regeneration at the time of liver resection. In this study we examine the effects of scaffolds containing hepatocyte growth factor, epidermal growth factor, fibroblast growth factor 1, fibroblast growth factor 2, and liver-derived extracellular matrix (L-ECM) when implanted into normal and partially hepatectomized rat livers. METHODS Scaffolds loaded with combinations of growth factors and L-ECM were implanted into normal livers (controls=L-ECM, polymer or sham) and livers following partial hepatectomy (controls=partial hepatectomy or sham). The primary end points were hepatocyte DNA synthesis and liver tissue penetration into scaffolds. Secondary end points included non-parenchymal cell DNA synthesis, liver weight analysis, liver function, and histological characterisation of the peri-implant parenchyma. RESULTS Four days after implantation in normal livers, there was significantly more hepatocyte proliferation around growth factor scaffolds than controls. Seven days after implantation, there was significantly more tissue penetration into growth factor scaffolds than control scaffolds. ED-1 and desmin positive cells were present in the pores of scaffolds. Two days after partial hepatectomy, there was significantly more hepatocyte proliferation around scaffold implanted livers than after partial hepatectomy alone. CONCLUSIONS Growth factors and L-ECM accelerated non-parenchymal cell migration into scaffolds and increased hepatocyte and non-parenchymal cell proliferation around them. These results demonstrate the potential for intrahepatic implantation of scaffolds containing growth factors and L-ECM to modulate growth in the normal and regenerating liver.
Collapse
|
17
|
Li J, Tao R, Wu W, Cao H, Xin J, Li J, Guo J, Jiang L, Gao C, Demetriou AA, Farkas DL, Li L. 3D PLGA scaffolds improve differentiation and function of bone marrow mesenchymal stem cell-derived hepatocytes. Stem Cells Dev 2011; 19:1427-36. [PMID: 20055663 DOI: 10.1089/scd.2009.0415] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Liver tissue engineering with hepatic stem cells provides a promising alternative to liver transplantation in patients with acute and chronic hepatic failure. In this study, a three-dimensional (3D) bioscaffold was introduced for differentiation of rat bone marrow mesenchymal stem cells (BMSCs) into hepatocytes. For hepatocyte differentiation, third passage BMSCs isolated from normal adult F344 rats were seeded into collagen-coated poly(lactic-co-glycolic acid) (C-PLGA) 3D scaffolds with hepatocyte differentiation medium for 3 weeks. Hepatogenesis in scaffolds was characterized by reverse transcript PCR, western blot, confocal laser scanning microscopy (CLSM), periodic acid-Schiff staining, histochemistry, and biochemical assays with hepatic-specific genes and markers. A monolayer culture system was used as a control differentiation group. The results showed that isolated cells possessed the basic features of BMSCs. Differentiated hepatocyte-like cells in C-PLGA scaffolds expressed hepatocyte-specific markers [eg, albumin (ALB), alpha-fetoprotein, cytokeratin 18, hepatocyte nuclear factor 4alpha, and cytochrome P450] at mRNA and protein levels. Most markers were expressed in C-PLGA group 1 week earlier than in the control group. Results of biocompatibility indicated that the differentiated hepatocyte-like cells grew more stably in C-PLGA scaffolds than that in controls during a 3-week differentiation period. The significantly higher metabolic functions in hepatocyte-like cells in the C-PLGA scaffold group further demonstrated the important role of the scaffold. CONCLUSION As the phenomenon of transdifferentiation is uncommon, our successful transdifferentiation rates of BMSCs to mature hepatocytes prove the superiority of the C-PLGA scaffold in providing a suitable environment for such a differentiation. This material can possibly be used as a bioscaffold for liver tissue engineering in future clinical therapeutic applications.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Imamura T, Kinebuchi Y, Ishizuka O, Seki S, Igawa Y, Nishizawa O. Three-dimensional culture systems for differentiation of mice embryonic stem cells into hepatocyte-like cells. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/17471060701295311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Hule RA, Nagarkar RP, Altunbas A, Ramay HR, Branco MC, Schneider JP, Pochan DJ. Correlations between structure, material properties and bioproperties in self-assembled beta-hairpin peptide hydrogels. Faraday Discuss 2009; 139:251-64; discussion 309-25, 419-20. [PMID: 19048999 DOI: 10.1039/b717616c] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A de novo designed beta-hairpin peptide (MAX8), capable of undergoing intramolecular folding and consequent intermolecular self-assembly into a cytocompatible hydrogel, has been studied. A combination of small angle neutron scattering (SANS) and cryogenic-transmission electron microscopy (cryo-TEM) have been used to quantitatively investigate the MAX8 nanofibrillar hydrogel network morphology. A change in the peptide concentration from 0.5 to 2 wt% resulted in a denser fibrillar network as revealed via SANS by a change in the high q (q = (4 pi/lambda) x sin (theta/2), where lambda = wavelength of incident neutrons and theta = scattering angle) mass fractal exponent from 2.5 to 3 and by a decrease in the measured correlation length from 23 to 16 A. A slope of -4 in the USANS regime indicates well-defined gel microporosity, an important characteristic for cellular substrate applications. These changes, both at the network as well as the individual fibril lengthscales, can be directly visualized in situ by cryo-TEM. Fibrillar nanostructures and network properties are directly related to bulk hydrogel stiffness via oscillatory rheology. Preliminary cell viability and anchorage studies at varying hydrogel stiffness confirm cell adhesion at early stages of cell culture within the window of stiffness investigated. Knowledge of the precise structure spanning length scales from the nanoscale up to the microscale can help in the formation of future, specific structure-bioproperty relationships when studying in vitro and in vivo behavior of these new peptide scaffolds.
Collapse
Affiliation(s)
- Rohan A Hule
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Haines-Butterick L, Rajagopal K, Branco M, Salick D, Rughani R, Pilarz M, Lamm MS, Pochan DJ, Schneider JP. Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proc Natl Acad Sci U S A 2007; 104:7791-6. [PMID: 17470802 PMCID: PMC1876526 DOI: 10.1073/pnas.0701980104] [Citation(s) in RCA: 473] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A peptide-based hydrogelation strategy has been developed that allows homogenous encapsulation and subsequent delivery of C3H10t1/2 mesenchymal stem cells. Structure-based peptide design afforded MAX8, a 20-residue peptide that folds and self-assembles in response to DMEM resulting in mechanically rigid hydrogels. The folding and self-assembly kinetics of MAX8 have been tuned so that when hydrogelation is triggered in the presence of cells, the cells become homogeneously impregnated within the gel. A unique characteristic of these gel-cell constructs is that when an appropriate shear stress is applied, the hydrogel will shear-thin resulting in a low-viscosity gel. However, after the application of shear has stopped, the gel quickly resets and recovers its initial mechanical rigidity in a near quantitative fashion. This property allows gel/cell constructs to be delivered via syringe with precision to target sites. Homogenous cellular distribution and cell viability are unaffected by the shear thinning process and gel/cell constructs stay fixed at the point of introduction, suggesting that these gels may be useful for the delivery of cells to target biological sites in tissue regeneration efforts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Matthew S. Lamm
- Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716
| | - Darrin J. Pochan
- Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716
- To whom correspondence may be addressed. E-mail: or
| | - Joel P. Schneider
- *Departments of Chemistry and Biochemistry and
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
21
|
Li J, Li L, Yu H, Cao H, Gao C, Gong Y. Growth and Metabolism of Human Hepatocytes on Biomodified Collagen Poly(lactic-co-glycolic acid) Three-Dimensional Scaffold. ASAIO J 2006; 52:321-7. [PMID: 16760723 DOI: 10.1097/01.mat.0000217794.35830.4a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hepatic tissue engineering offers a promising approach toward alleviating the need for donor liver, yet many challenges must be overcome including choice of scaffold, cell source, and immunologic barriers. Poly(lactic-co-glycolic acid) (PLGA) polymers are innovative biodegradable materials that have been shown to be useful as scaffolds for seeding and culturing various types of cells. In this study, a porous sponge scaffold of modified PLGA polymer with collagen was investigated for its ability to improve the growth and metabolism of human hepatocytes. We evaluated the biocompatibility of collagen-modified PLGA (C-PLGA) scaffolds with hepatocytes isolated from human liver. Cell adhesion and function (cell density, culture lifespan, albumin synthesis, urea synthesis, and ammonia elimination and diazepam clearance) were assessed during different culture periods. The number of hepatocytes cultured in C-PLGA scaffolds was higher compared with those cultured in PLGA scaffolds without collagen modification, and the lifespan of hepatocytes cultured in C-PLGA scaffolds was longer than that of cells cultured in PLGA scaffolds. Albumin and urea synthesis and ammonia elimination from attached hepatocytes were greater in C-PLGA than in PLGA scaffolds, with the exception of diazepam clearance. Collagen-modified PLGA scaffold is a promising biomaterial for hepatic tissue engineering.
Collapse
Affiliation(s)
- Jun Li
- Department of Infectious Disease, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
This review focuses on the expanding role for biomaterials and polymer scaffolds in liver tissue engineering. Studies are subdivided into in vitro and in vivo approaches. The in vitro section of the review discusses the challenges specific to liver tissue engineering, and how the choice of scaffold and its structure influences the success of the regenerative medicine strategy. The in vivo section evaluates early attempts to stimulate liver repair with cell and growth factor therapies, their failings and how current approaches aim to solve these problems.
Collapse
Affiliation(s)
- John S Hammond
- University Hospital Nottingham, Department of Surgery, Derby Road, Nottingham, NG7 2UH, UK
| | | | | |
Collapse
|
23
|
Heng BC, Yu H, Yin Y, Lim SG, Cao T. Factors influencing stem cell differentiation into the hepatic lineage in vitro. J Gastroenterol Hepatol 2005; 20:975-87. [PMID: 15955203 DOI: 10.1111/j.1440-1746.2005.03856.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A major area of research in transplantation medicine is the potential application of stem cells in liver regeneration. This would require well-defined and efficient protocols for directing the differentiation of stem cells into the hepatic lineage, followed by their selective purification and proliferation in vitro. The development of such protocols would reduce the likelihood of spontaneous differentiation of stem cells into divergent lineages upon transplantation, as well as reduce the risk of teratoma formation in the case of embryonic stem cells. Additionally, such protocols could provide useful in vitro models for studying hepatogenesis and liver metabolism. The development of pharmokinetic and cytotoxicity/genotoxicity screening tests for newly developed biomaterials and drugs, could also utilize protocols developed for the hepatic differentiation of stem cells. Hence, this review critically examines the various strategies that could be employed to direct the differentiation of stem cells into the hepatic lineage in vitro.
Collapse
Affiliation(s)
- Boon Chin Heng
- Stem Cell Laboratory, Faculty of Dentistry, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
24
|
Imamura T, Cui L, Teng R, Johkura K, Okouchi Y, Asanuma K, Ogiwara N, Sasaki K. Embryonic stem cell-derived embryoid bodies in three-dimensional culture system form hepatocyte-like cells in vitro and in vivo. ACTA ACUST UNITED AC 2005; 10:1716-24. [PMID: 15684680 DOI: 10.1089/ten.2004.10.1716] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Pluripotent embryonic stem (ES) cells can be a source of hepatocytes for bioartificial livers or transplantation. In this study, embryoid bodies (EBs) were formed from ES cells cultured in polypropylene conical tubes. The EBs were then inserted into a collagen scaffold three-dimensional culture system and stimulated with exogenous growth factors and hormones to induce hepatic histogenesis. The EB-derived cells expressed liver-specific genes, and albumin-positive cells formed cord-like structures that were not present in two-dimensional monolayer culture systems. However, these albumin- positive cells were not cytokeratin 18 positive. Electron microscopy showed immature hepatocyte- like cells having tight junctions, rough endoplasmic reticulum, and intercellular canaliculi. The scaffold including EB-derived hepatocyte-like cells was transplanted into the median lobes of partially hepatectomized nude mice. After 7 and 14 days, cells positive for both albumin and cytokeratin 18 appeared in the transplant and formed clustered aggregates. Thus the collagen scaffold three-dimensional culture system and the liver regeneration environment induced hepatocyte-like cells and hepatic lobule-like aggregates from EBs. Therefore, differentiating EBs in the scaffold culture system may be useful in developing bioartificial livers, secondary livers, and as pharmaceutical models.
Collapse
Affiliation(s)
- Tetsuya Imamura
- Department of Anatomy and Organ Technology, Shinshu University School of Medicine, Matsumoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|