1
|
Kiso-Farnè K, Yaoi T, Fujimoto T, Itoh K. Low Doses of Bisphenol A Disrupt Neuronal Differentiation of Human Neuronal Stem/Progenitor Cells. Acta Histochem Cytochem 2022; 55:193-202. [PMID: 36688137 PMCID: PMC9840471 DOI: 10.1267/ahc.22-00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
Bisphenol A (BPA) is an endocrine disrupting chemical. Human epidemiological studies have suggested that adverse neurobehavioral outcomes are induced by fetal exposure to BPA. The remarkable differences in the corticogenesis between human and agyrencephalic mammals are an increase in the intermediate progenitor cells (IPCs) and a following increase in the subplate thickness. It is uncertain whether low doses of BPA (low-BPA) affect human early corticogenesis when basal progenitor cells (BPs) produce IPCs resulting in amplified neurogenesis. In this study, human-derived neuronal stem/progenitor cells were exposed to low-BPA or the vehicle only, and the resultant cell type-specific molecular changes and morphology were analyzed. We focused on stem cells immunoreactive for SOX2, BPs for NHLH1, and immature neurons for DCX. SOX2-positive cells significantly decreased at day in vitro (DIV) 4 and 7, whereas NHLH1-positive cells tended to be higher, while DCX-positive cells significantly increased at DIV7 when exposed to 100 nM of BPA compared with the vehicle. Morphologically DCX-positive cells showed a decrease in unipolar cells and an increase in multipolar cells when exposed to 100 nM of BPA compared with the vehicle. These results provide insights into the in vivo effect of low-BPA on neuronal differentiation in the human fetal corticogenesis.
Collapse
Affiliation(s)
- Kaori Kiso-Farnè
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Takeshi Yaoi
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Takahiro Fujimoto
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
2
|
Wagstaff EL, Heredero Berzal A, Boon CJF, Quinn PMJ, ten Asbroek ALMA, Bergen AA. The Role of Small Molecules and Their Effect on the Molecular Mechanisms of Early Retinal Organoid Development. Int J Mol Sci 2021; 22:7081. [PMID: 34209272 PMCID: PMC8268497 DOI: 10.3390/ijms22137081] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Early in vivo embryonic retinal development is a well-documented and evolutionary conserved process. The specification towards eye development is temporally controlled by consecutive activation or inhibition of multiple key signaling pathways, such as the Wnt and hedgehog signaling pathways. Recently, with the use of retinal organoids, researchers aim to manipulate these pathways to achieve better human representative models for retinal development and disease. To achieve this, a plethora of different small molecules and signaling factors have been used at various time points and concentrations in retinal organoid differentiations, with varying success. Additions differ from protocol to protocol, but their usefulness or efficiency has not yet been systematically reviewed. Interestingly, many of these small molecules affect the same and/or multiple pathways, leading to reduced reproducibility and high variability between studies. In this review, we make an inventory of the key signaling pathways involved in early retinogenesis and their effect on the development of the early retina in vitro. Further, we provide a comprehensive overview of the small molecules and signaling factors that are added to retinal organoid differentiation protocols, documenting the molecular and functional effects of these additions. Lastly, we comparatively evaluate several of these factors using our established retinal organoid methodology.
Collapse
Affiliation(s)
- Ellie L. Wagstaff
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands;
| | - Andrea Heredero Berzal
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
| | - Camiel J. F. Boon
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Peter M. J. Quinn
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology & Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center—New York-Presbyterian Hospital, New York, NY 10032, USA;
| | | | - Arthur A. Bergen
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands;
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
- Netherlands Institute for Neuroscience (NIN-KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
3
|
Godoy-Parejo C, Deng C, Zhang Y, Liu W, Chen G. Roles of vitamins in stem cells. Cell Mol Life Sci 2020; 77:1771-1791. [PMID: 31676963 PMCID: PMC11104807 DOI: 10.1007/s00018-019-03352-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/12/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
Stem cells can differentiate to diverse cell types in our body, and they hold great promises in both basic research and clinical therapies. For specific stem cell types, distinctive nutritional and signaling components are required to maintain the proliferation capacity and differentiation potential in cell culture. Various vitamins play essential roles in stem cell culture to modulate cell survival, proliferation and differentiation. Besides their common nutritional functions, specific vitamins are recently shown to modulate signal transduction and epigenetics. In this article, we will first review classical vitamin functions in both somatic and stem cell cultures. We will then focus on how stem cells could be modulated by vitamins beyond their nutritional roles. We believe that a better understanding of vitamin functions will significantly benefit stem cell research, and help realize their potentials in regenerative medicine.
Collapse
Affiliation(s)
- Carlos Godoy-Parejo
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Chunhao Deng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yumeng Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
4
|
Eve DJ, Sanberg PR. Article Commentary: Stem Cell Research in Cell Transplantation: An Analysis of Geopolitical Influence by Publications. Cell Transplant 2017; 16:867-873. [DOI: 10.3727/000000007783465190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
One of the fastest growing fields in researching treatments for neurodegenerative and other disorders is the use of stem cells. These cells are naturally occurring and can be obtained from three different stages of an organism's life: embryonic, fetal, and adult. In the US, political doctrine has restricted use of federal funds for stem cells, enhancing research towards an adult source. In order to determine how this legislation may be represented by the stem cell field, a retrospective analysis of stem cell articles published in the journal Cell Transplantation over a 2-year period was performed. Cell Transplantation is considered a translational journal from preclinical to clinical, so it was of interest to determine the publication outcome of stem cell articles 6 years after the US regulations. The distribution of the source of stem cells was found to be biased towards the adult stage, but relatively similar over the embryonic and fetal stages. The fetal stem cell reports were primarily neural in origin, whereas the adult stem cell ones were predominantly mesenchymal and used mainly in neural studies. The majority of stem cell studies published in Cell Transplantation were found to fall under the umbrella of neuroscience research. American scientists published the most articles using stem cells with a bias towards adult stem cells, supporting the effect of the legislation, whereas Europe was the leading continent with a bias towards embryonic and fetal stem cells, where research is “controlled” but not restricted. Japan was also a major player in the use of stem cells. Allogeneic transplants (where donor and recipient are the same species) were the most common transplants recorded, although the transplantation of human-derived stem cells into rodents was the most common specific transplantation performed. This demonstrates that the use of stem cells is an increasingly important field (with a doubling of papers between 2005 and 2006), which is likely to develop into a major therapeutic area over the next few decades and that funding restrictions can affect the type of research being performed.
Collapse
Affiliation(s)
- David J. Eve
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, College of Medicine, Tampa, FL, USA
| | - Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, College of Medicine, Tampa, FL, USA
| |
Collapse
|
5
|
Eve DJ, Sanberg PR. Article Commentary: Regenerative Medicine: An Analysis of Cell Transplantation's Impact. Cell Transplant 2017; 16:751-764. [DOI: 10.3727/000000007783465136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- David J. Eve
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
6
|
Manganelli G, Masullo U, Filosa S. HTS/HCS to screen molecules able to maintain embryonic stem cell self-renewal or to induce differentiation: overview of protocols. Stem Cell Rev Rep 2015; 10:802-19. [PMID: 25007774 DOI: 10.1007/s12015-014-9528-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Embryonic stem (ES) cells, combining self-renewal ability with wide range tissue-specific cell differentiation, represent one of the most powerful model systems in basic research, drug discovery and biomedical applications. In the field of drug development, ES cells are instrumental in high-throughput/content screening (HTS/HCS) for the evaluation of large compound libraries to test biological activity and toxic properties. Since it is a high priority to test new compounds in vitro, before starting animal and human treatments, there is an increasing demand for new in vitro models that can be used in HTS/HCS to facilitate drug development. In order to achieve this objective, several methods for ES cell self-renewal or differentiation have been evaluated to assess their compatibility with HTS/HCS. This review describes protocols used to screen molecules able to maintain self-renewal or to induce differentiation in ectodermal, mesodermal, endodermal, and their derivative cell lines.
Collapse
Affiliation(s)
- Genesia Manganelli
- Istituto di Bioscienze e BioRisorse , UOS Napoli -CNR, Via Pietro Castellino 111, 80131, Naples, Italy,
| | | | | |
Collapse
|
7
|
Incitti T, Messina A, Bozzi Y, Casarosa S. Sorting of Sox1-GFP Mouse Embryonic Stem Cells Enhances Neuronal Identity Acquisition upon Factor-Free Monolayer Differentiation. Biores Open Access 2014; 3:127-35. [PMID: 24940564 PMCID: PMC4048977 DOI: 10.1089/biores.2014.0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Embryonic stem cells (ESCs) can give rise to all the differentiated cell types of the organism, including neurons. However, the efficiency and specificity of neural differentiation protocols still needs to be improved in order to plan their use in cell replacement therapies. In this study, we modified a monolayer differentiation protocol by selecting green fluorescent protein (GFP) positive neural precursors with fluorescence-activated cell sorting (FACS). The enhancement of neural differentiation was obtained by positively selecting for neural precursors, while specific neuronal subtypes spontaneously differentiated without additional cues; a comparable but delayed behavior was also observed in the GFP negative population, indicating that sorting settings per se eliminated nonneural and undifferentiated ESCs. This highly reproducible approach could be applied as a strategy to enhance neuronal differentiation and could be the first step toward the selection of pure populations of neurons, to be generated by the administration of specific factors in high throughput screening assays.
Collapse
Affiliation(s)
- Tania Incitti
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Andrea Messina
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Yuri Bozzi
- Centre for Integrative Biology, University of Trento, Trento, Italy
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy
| | - Simona Casarosa
- Centre for Integrative Biology, University of Trento, Trento, Italy
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy
| |
Collapse
|
8
|
Romano MR, Biagioni F, Carrizzo A, Lorusso M, Spadaro A, Micelli Ferrari T, Vecchione C, Zurria M, Marrazzo G, Mascio G, Sacchetti B, Madonna M, Fornai F, Nicoletti F, Lograno MD. Effects of vitamin B12 on the corneal nerve regeneration in rats. Exp Eye Res 2014; 120:109-17. [PMID: 24486457 DOI: 10.1016/j.exer.2014.01.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/23/2013] [Accepted: 01/21/2014] [Indexed: 12/19/2022]
Abstract
The study was designed to investigate the effects of a new ophthalmic solution containing 0.05% vitamin B12 0.05% on corneal nerve regeneration in rats after corneal injury. Eyes of anesthetized male Wistar rats were subjected to corneal injury by removing the corneal epithelium with corneal brush (Algerbrush). After the epithelial debridement, the right eye of each animal received the instillation of one drop of the ophthalmic solution containing vitamin B12 0.05% plus taurine 0.5% and sodium hyaluronate 0.5% four time per day for 10 or 30 days. Left eyes were used as control and treated with solution containing taurine 0.5% and sodium hyaluronate 0.5% alone following the same regimen. Fluorescein staining by slit-lamp and morphological analysis was used to determine corneal wound healing. Immunohistochemistry, immunoblot and confocal microscopy were used to examine corneal re-innervation. Slit-lamp and histological analyses showed that re-epithelization of the corneas was accelerated in rats treated with vitamin B12. A clear-cut difference between the two groups of rats was seen after 10 days of treatment, whereas a near-to-complete re-epithelization was observed in both groups at 30 days. Vitamin B12 treatment had also a remarkable effect on corneal re-innervation, as shown by substantial increased in the expression of neurofilament 160 and β-III tubulin at both 10 and 30 days. The presence of SV2A-positive nerve endings suggests the presence of synapse-like specialized structures in corneal epithelium of the eye treated with vitamin B12. Our findings suggest that vitamin B12 treatment represents a powerful strategy to accelerate not only re-epithelization but also corneal re-innervation after mechanical injury.
Collapse
Affiliation(s)
- Maria Rosaria Romano
- Department of Pharmacy-Pharmacological Sciences, University of Bari, Via Orabona 4, Bari, Italy.
| | | | | | - Massimo Lorusso
- Ecclesiastical Authority Regional General Hospital Miulli, Acquaviva delle Fonti, BA, Italy
| | - Angelo Spadaro
- Department of Drug Sciences, University of Catania, Catania, Italy
| | | | - Carmine Vecchione
- IRCSS, I.N.M., Neuromed, Pozzilli, IS, Italy; Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | | | | | | | | | | | - Francesco Fornai
- IRCSS, I.N.M., Neuromed, Pozzilli, IS, Italy; Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy
| | - Ferdinando Nicoletti
- IRCSS, I.N.M., Neuromed, Pozzilli, IS, Italy; Department of Physiology and Pharmacology, University "Sapienza", Roma, Italy
| | - Marcello Diego Lograno
- Department of Pharmacy-Pharmacological Sciences, University of Bari, Via Orabona 4, Bari, Italy
| |
Collapse
|
9
|
Pierret C, Morrison JA, Rath P, Zigler RE, Engel LA, Fairchild CL, Shi H, Maruniak JA, Kirk MD. Developmental cues and persistent neurogenic potential within an in vitro neural niche. BMC DEVELOPMENTAL BIOLOGY 2010; 10:5. [PMID: 20074373 PMCID: PMC2824744 DOI: 10.1186/1471-213x-10-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 01/14/2010] [Indexed: 12/18/2022]
Abstract
Background Neurogenesis, the production of neural cell-types from neural stem cells (NSCs), occurs during development as well as within select regions of the adult brain. NSCs in the adult subependymal zone (SEZ) exist in a well-categorized niche microenvironment established by surrounding cells and their molecular products. The components of this niche maintain the NSCs and their definitive properties, including the ability to self-renew and multipotency (neuronal and glial differentiation). Results We describe a model in vitro NSC niche, derived from embryonic stem cells, that produces many of the cells and products of the developing subventricular zone (SVZ) and adult SEZ NSC niche. We demonstrate a possible role for apoptosis and for components of the extracellular matrix in the maintenance of the NSC population within our niche cultures. We characterize expression of genes relevant to NSC self-renewal and the process of neurogenesis and compare these findings to gene expression produced by an established neural-induction protocol employing retinoic acid. Conclusions The in vitro NSC niche shows an identity that is distinct from the neurally induced embryonic cells that were used to derive it. Molecular and cellular components found in our in vitro NSC niche include NSCs, neural progeny, and ECM components and their receptors. Establishment of the in vitro NSC niche occurs in conjunction with apoptosis. Applications of this culture system range from studies of signaling events fundamental to niche formation and maintenance as well as development of unique NSC transplant platforms to treat disease or injury.
Collapse
Affiliation(s)
- Chris Pierret
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yang T, Tsang KS, Poon WS, Ng HK. Neurotrophism of bone marrow stromal cells to embryonic stem cells: noncontact induction and transplantation to a mouse ischemic stroke model. Cell Transplant 2009; 18:391-404. [PMID: 19622227 DOI: 10.3727/096368909788809767] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Embryonic stem (ES) cell-derived cell products may serve as a source of cells for regenerative medicine. Currently available technologies for the induction of ES cells into neural lineage cells require extended culturing in vitro and complex procedural manipulations, with variable yields of heterogeneous cells, which have hindered the prospective use of cell derivatives for treatment of ischemic stroke. We established a simple and efficient method to derive mouse ES cells into neural lineage cells using an 8-day coculture with the bone marrow stromal cells MS5, followed by a 6-day propagation culture and a 4-day selection culture. The protocol generated a relatively high yield of neural lineage cells without any mesodermal and endodermal lineage commitment. In in vivo study, these derived cells could improve the cognitive function of ischemic stroke mice. Three weeks after transplantation, migration of implanted cells to lesioned areas was noted. It was also evident of a normalization of pyramidal neuron density and morphology in hippocampal CA1 region. One (1/17) episode of teratoma development was noted. Data suggested that MS5 cells may exert a neurotrophic effect to enhance neural differentiation of ES cells and MS5-induced ES cell-derived cells appeared to be applicable to cell therapy for ischemic stroke.
Collapse
Affiliation(s)
- Tao Yang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong; Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
| | | | | | | |
Collapse
|
11
|
Chiba S, Lee YM, Zhou W, Freed CR. Noggin enhances dopamine neuron production from human embryonic stem cells and improves behavioral outcome after transplantation into Parkinsonian rats. Stem Cells 2008; 26:2810-20. [PMID: 18772316 DOI: 10.1634/stemcells.2008-0085] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Symptoms of Parkinson's disease have been improved by transplantation of fetal dopamine neurons recovered from aborted fetal tissue, but tissue recovery is difficult. Human embryonic stem cells may provide unlimited cells for transplantation if they can be converted to dopamine neurons and survive transplantation into brain. We have found that the bone morphogenic protein antagonist Noggin increased the number of dopamine neurons generated in vitro from human and mouse embryonic stem cells differentiated on mouse PA6 stromal cells. Noggin effects were seen with either early (for mouse, days 0-7, and for human, days 0-9) or continuous treatment. After transplant into cyclosporin-immunosuppressed rats, human dopamine neurons improved apomorphine circling in direct relation to the number of surviving dopamine neurons, which was fivefold greater after Noggin treatment than with control human embryonic stem cell transplants differentiated only on PA6 cells. We conclude that Noggin promotes dopamine neuron differentiation and survival from human and mouse embryonic stem cells. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Shunmei Chiba
- Department of Medicine, Division of Clinical Pharmacology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
12
|
Fico A, Manganelli G, Simeone M, Guido S, Minchiotti G, Filosa S. High-throughput screening-compatible single-step protocol to differentiate embryonic stem cells in neurons. Stem Cells Dev 2008; 17:573-84. [PMID: 18576914 DOI: 10.1089/scd.2007.0130] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Biotechnologies such as high-throughput screening (HTS) enable evaluation of large compound libraries for their biological activity and toxic properties. In the field of drug development, embryonic stem (ES) cells have been instrumental in HTS for testing the effect of new compounds. We report an innovative method in one step to differentiate ES cells in neurons and glial cells. The four different neuronal subtypes, gamma-aminobutyric acid (GABA)-ergic, dopaminergic, serotonergic, and motor neurons, are formed in culture. This protocol is adaptable to small wells and is highly reproducible, as indicated by the Z-factor value. Moreover, by using either leukemia inhibitory factor (LIF) or recombinant Cripto protein in our culture conditions, we provide evidence that this protocol is suitable for testing the effect of different molecules on neuronal differentiation of ES cells. Finally, thanks to the simplicity in carrying out the experiment, this method provides the possibility of following the morphological evolution of the in vitro differentiating neuronal cells by timelapse videomicroscopy. Our experimental system provides a powerful tool for testing the effect of different substances on survival and/or differentiation of neuronal and glial cells in an HTS-based approach. Furthermore, using genetically modified ES cells, it would be possible to screen for drugs that have a therapeutic effect on specific neuronal pathologies or to follow, by time-lapse videomicroscopy, their ability to in vitro differentiate.
Collapse
Affiliation(s)
- Annalisa Fico
- Stem Cell Fate Lab, Istituto di Genetica e Biofisica Adriano Buzzati Traverso CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Lenka N, Ramasamy SK. Neural induction from ES cells portrays default commitment but instructive maturation. PLoS One 2007; 2:e1349. [PMID: 18092007 PMCID: PMC2121127 DOI: 10.1371/journal.pone.0001349] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 12/04/2007] [Indexed: 11/18/2022] Open
Abstract
The neural induction has remained a debatable issue pertaining to whether it is a mere default process or it involves precise instructive cues. We have chosen the embryonic stem (ES) cell model to address this issue. In a devised monoculture strategy, the cell-cell interaction availed through optimum cell plating density could define the niche for the attainment of efficient in vitro neurogenesis from the ES cells. The medium plating density was found ideal in generating optimum number of progenitors and also yielded about 80% mature neurons in a serum free culture set up barring any exogenous inducers. We could also demarcate and quantify the neural stem cells/progenitors among the heterogeneous cell population of differentiating ES cells using nestin intron II driven EGFP expression as a tool. The one week post-plating was determined to be the critical time window for optimum neural progenitor generation from ES cells that helped us further in purifying these cells and in demonstrating their proliferation and multipotent differentiation potential. Seeding cells at varying densities, we could decipher an interesting paradoxical scenario that interlinked both commitment and maturation with the initial plating density having a vital influence on neuronal maturation but not specification and the secretory factors were apparently playing a key role during this process. Thus it was comprehended that, the neural specification was a default process independent of exogenous factors and cellular interaction. Conversely, a defined number of cells at the specification stage itself seemed critical to provide an auto-/paracrine means of signaling threshold for the maturation process to materialize.
Collapse
Affiliation(s)
- Nibedita Lenka
- National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, India.
| | | |
Collapse
|
14
|
From bench to bed: the potential of stem cells for the treatment of Parkinson's disease. Cell Tissue Res 2007; 331:323-36. [PMID: 18034267 DOI: 10.1007/s00441-007-0541-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 10/23/2007] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD) is the most common movement disorder. The neuropathology is characterized by the loss of dopamine neurons in the substantia nigra pars compacta. Transplants of fetal/embryonic midbrain tissue have exhibited some beneficial clinical effects in open-label trials. Neural grafting has, however, not become a standard treatment for several reasons. First, the supply of donor cells is limited, and therefore, surgery is accompanied by difficult logistics. Second, the extent of beneficial effects has varied in a partly unpredictable manner. Third, some patients have exhibited graft-related side effects in the form of involuntary movements. Fourth, in two major double-blind placebo-controlled trials, there was no effect of the transplants on the primary endpoints. Nevertheless, neural transplantation continues to receive a great deal of interest, and now, attention is shifting to the idea of using stem cells as starting donor material. In the context of stem cell therapy for PD, stem cells can be divided into three categories: neural stem cells, embryonic stem cells, and other tissue-specific types of stem cells, e.g., bone marrow stem cells. Each type of stem cell is associated with advantages and disadvantages. In this article, we review recent advances of stem cell research of direct relevance to clinical application in PD and highlight the pros and cons of the different sources of cells. We draw special attention to some key problems that face the translation of stem cell technology into the clinical arena.
Collapse
|