1
|
Kubelt C, Hellmold D, Peschke E, Hauck M, Will O, Schütt F, Lucius R, Adelung R, Scherließ R, Hövener JB, Jansen O, Synowitz M, Held-Feindt J. Establishment of a Rodent Glioblastoma Partial Resection Model for Chemotherapy by Local Drug Carriers-Sharing Experience. Biomedicines 2023; 11:1518. [PMID: 37371613 DOI: 10.3390/biomedicines11061518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Local drug delivery systems (LDDS) represent a promising therapy strategy concerning the most common and malignant primary brain tumor glioblastoma (GBM). Nevertheless, to date, only a few systems have been clinically applied, and their success is very limited. Still, numerous new LDDS approaches are currently being developed. Here, (partial resection) GBM animal models play a key role, as such models are needed to evaluate the therapy prior to any human application. However, such models are complex to establish, and only a few reports detail the process. Here, we report our results of establishing a partial resection glioma model in rats suitable for evaluating LDDS. C6-bearing Wistar rats and U87MG-spheroids- and patient-derived glioma stem-like cells-bearing athymic rats underwent tumor resection followed by the implantation of an exemplary LDDS. Inoculation, tumor growth, residual tumor tissue, and GBM recurrence were reliably imaged using high-resolution Magnetic Resonance Imaging. The release from an exemplary LDDS was verified in vitro and in vivo using Fluorescence Molecular Tomography. The presented GBM partial resection model appears to be well suited to determine the efficiency of LDDS. By sharing our expertise, we intend to provide a powerful tool for the future testing of these very promising systems, paving their way into clinical application.
Collapse
Affiliation(s)
- Carolin Kubelt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, UKSH Campus Kiel, 24105 Kiel, Germany
| | - Dana Hellmold
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, UKSH Campus Kiel, 24105 Kiel, Germany
| | - Eva Peschke
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, UKSH Campus Kiel, Kiel University, 24118 Kiel, Germany
| | - Margarethe Hauck
- Functional Nanomaterials, Department of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| | - Olga Will
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, UKSH Campus Kiel, Kiel University, 24118 Kiel, Germany
| | - Fabian Schütt
- Functional Nanomaterials, Department of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
- Priority Research Area Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, 24118 Kiel, Germany
| | - Ralph Lucius
- Institute of Anatomy, Kiel University, 24118 Kiel, Germany
| | - Rainer Adelung
- Functional Nanomaterials, Department of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
- Priority Research Area Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, 24118 Kiel, Germany
| | - Regina Scherließ
- Priority Research Area Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, 24118 Kiel, Germany
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, 24118 Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, UKSH Campus Kiel, Kiel University, 24118 Kiel, Germany
- Priority Research Area Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, 24118 Kiel, Germany
| | - Olav Jansen
- Priority Research Area Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, 24118 Kiel, Germany
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, UKSH Campus Kiel, 24105 Kiel, Germany
| | - Michael Synowitz
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, UKSH Campus Kiel, 24105 Kiel, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, UKSH Campus Kiel, 24105 Kiel, Germany
- Priority Research Area Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, 24118 Kiel, Germany
| |
Collapse
|
2
|
Adaptation of laser interstitial thermal therapy for tumor ablation under MRI monitoring in a rat orthotopic model of glioblastoma. Acta Neurochir (Wien) 2021; 163:3455-3463. [PMID: 34554269 DOI: 10.1007/s00701-021-05002-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Laser interstitial thermal therapy (LITT) under magnetic resonance imaging (MRI) monitoring is being increasingly used in cytoreductive surgery of recurrent brain tumors and tumors located in eloquent brain areas. The objective of this study was to adapt this technique to an animal glioma model. METHODS A rat model of U251 glioblastoma (GBM) was employed. Tumor location and extent were determined by MRI and dynamic contrast-enhanced (DCE) MRI. A day after assessing tumor appearance, tumors were ablated during diffusion-weighted imaging (DWI)-MRI using a Visualase LITT system (n = 5). Brain images were obtained immediately after ablation and again at 24 h post-ablation to confirm the efficacy of tumor cytoablation. Untreated tumors served as controls (n = 3). Rats were injected with fluorescent isothiocyanate (FITC) dextran and Evans blue that circulated for 10 min after post-LITT MRI. The brains were then removed for fluorescence microscopy and histopathology evaluations using hematoxylin and eosin (H&E) and major histocompatibility complex (MHC) staining. RESULTS All rats showed a space-occupying tumor with T2 and T1 contrast-enhancement at pre-LITT imaging. The rats that underwent the LITT procedure showed a well-demarcated ablation zone with near-complete ablation of tumor tissue and with peri-ablation contrast enhancement at 24 h post-ablation. Tumor cytoreduction by ablation as seen on MRI was confirmed by H&E and MHC staining. CONCLUSIONS Data showed that tumor cytoablation using MRI-monitored LITT was possible in preclinical glioma models. Real-time MRI monitoring facilitated visualizing and controlling the area of ablation as it is otherwise performed in clinical applications.
Collapse
|
3
|
Wang JL, Barth RF, Cavaliere R, Puduvalli VK, Giglio P, Lonser RR, Elder JB. Phase I trial of intracerebral convection-enhanced delivery of carboplatin for treatment of recurrent high-grade gliomas. PLoS One 2020; 15:e0244383. [PMID: 33373402 PMCID: PMC7771668 DOI: 10.1371/journal.pone.0244383] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background Carboplatin is a potent cytoreductive agent for a variety of solid tumors. However, when delivered systemically, clinical efficacy for the treatment of high grade gliomas is poor due to limited penetration across the blood-brain barrier (BBB). Direct intracerebral (IC) convection-enhanced delivery (CED) of carboplatin has been used to bypass the BBB and successfully treat the F98 rat glioma. Based on these studies, we initiated a Phase I clinical trial. Objective This Phase I clinical trial was conducted to establish the maximum tolerated dose and define the toxicity profile of carboplatin delivered intracerebrally via convection enhanced delivery (CED) for patients with high grade glial neoplasms. Methods Cohorts of 3 patients with recurrent WHO grade III or IV gliomas were treated with escalating doses of CED carboplatin (1–4 μg in 54mL over 72 hours) delivered via catheters placed at the time of recurrent tumor resection. The primary outcome measure was determination of the maximum tolerated dose (MTD). Secondary outcome measures included overall survival (OS), progression-free survival (PFS), and radiographic correlation. Results A total of 10 patients have completed treatment with infusion doses of carboplatin of 1μg, 2μg, and 4μg. The total planned volume of infusion was 54mL for each patient. All patients had previously received surgery and chemoradiation. Histology at treatment include GBM (n = 9) and anaplastic oligodendroglioma (n = 1). Median KPS was 90 (range, 70 to 100) at time of treatment. Median PFS and OS were 2.1 and 9.6 months after completion of CED, respectively. A single adverse event possibly related to treatment was noted (generalized seizure). Conclusions IC CED of carboplatin as a potential therapy for recurrent malignant glioma is feasible and safe at doses up to 4μg in 54mL over 72 hours. Further studies are needed to determine the maximum tolerated dose and potential efficacy.
Collapse
Affiliation(s)
- Joshua L. Wang
- Department of Neurological Surgery, The Ohio State University College of Medicine Wexner Medical Center, Columbus, Ohio, United States of America
- * E-mail:
| | - Rolf F. Barth
- Department of Pathology, The Ohio State University College of Medicine Wexner Medical Center, Columbus, Ohio, United States of America
| | - Robert Cavaliere
- Division of Neuro-Oncology, Department of Neurology, The Ohio State University College of Medicine Wexner Medical Center, Columbus, Ohio, United States of America
| | - Vinay K. Puduvalli
- Division of Neuro-Oncology, Department of Neurology, The Ohio State University College of Medicine Wexner Medical Center, Columbus, Ohio, United States of America
| | - Pierre Giglio
- Division of Neuro-Oncology, Department of Neurology, The Ohio State University College of Medicine Wexner Medical Center, Columbus, Ohio, United States of America
| | - Russell R. Lonser
- Department of Neurological Surgery, The Ohio State University College of Medicine Wexner Medical Center, Columbus, Ohio, United States of America
| | - J. Bradley Elder
- Department of Neurological Surgery, The Ohio State University College of Medicine Wexner Medical Center, Columbus, Ohio, United States of America
| |
Collapse
|
4
|
Emerich DF, Winn SR, Bartus RT. Injection of Chemotherapeutic Microspheres and Glioma III: Parameters to Optimize Efficacy. Cell Transplant 2017. [DOI: 10.3727/096020198389762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Injectable microspheres may provide a means of providing local, sustained exposure of glioma to chemotherapeutics to improve patient survival. Using a rodent model of surgically resected glioma, we previously demonstrated that direct injections of chemotherapeutic microspheres into the tissue surrounding a resection cavity provide superior survival effects over injections of the same microspheres directly into the surgical cavity. The present experiments extended this novel observation by exploring several parameters related to the use of intraparenchymal injections of chemotherapeutic microspheres to treat glioma. Using a rat model of resected glioma, several principles regarding the use of local sustained release carboplatin microspheres were established. First, an inverted U dose–response was observed, wherein further dose escalation beyond the optimal dose was not efficacious and indeed produced significant local toxicity. Second, it was necessary to expose approximately 40% of the tumor margin to sustained release carboplatin in order to increase survival in this model. Survival was not enhanced when the proportion of the tumor margin exposed to carboplatin was only 20%. Third, the distribution of the chemotherapeutic microsphere injections along the tumor perimeter was shown to be important, requiring that the entire perimeter be proportionately exposed to the chemotherapeutic agent. Together, these data continue to support the development of chemotherapeutic microspheres for treating glioma. However, they also caution that a number of fundamental parameters can profoundly influence the efficacy that might be expected from local sustained delivery. Careful attention to these principles is not only required if chemotherapeutic microspheres are to be used efficaciously, but these principles should provide a foundation to further optimize the potential of this and other polymeric delivery systems under development for local, intraparenchymal drug delivery to glioma.
Collapse
|
5
|
Drug encapsulated polymeric microspheres for intracranial tumor therapy: A review of the literature. Adv Drug Deliv Rev 2015; 91:23-37. [PMID: 25895620 DOI: 10.1016/j.addr.2015.04.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 12/13/2022]
Abstract
Despite intensive surgical excision, radiation therapy, and chemotherapy, the current life expectancy for patients diagnosed with glioblastoma multiforme is only 12 to 15months. One of the approaches being explored to increase chemotherapeutic efficacy is to locally deliver chemotherapeutics encapsulated within degradable, polymeric microspheres. This review describes the techniques used to formulate drug encapsulated microspheres targeted for intracranial tumor therapy and how microsphere characteristics such as drug loading and encapsulation efficiency can be tuned based on formulation parameters. Further, the results of in vitro studies are discussed, detailing the varied drug release profiles obtained and validation of drug efficacy. Finally, in vivo results are summarized, highlighting the study design and the effectiveness of the drug encapsulated microspheres applied intracranially.
Collapse
|
6
|
|
7
|
Yang W, Huo T, Barth RF, Gupta N, Weldon M, Grecula JC, Ross BD, Hoff BA, Chou TC, Rousseau J, Elleaume H. Convection enhanced delivery of carboplatin in combination with radiotherapy for the treatment of brain tumors. J Neurooncol 2010; 101:379-90. [PMID: 20577779 DOI: 10.1007/s11060-010-0272-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 06/14/2010] [Indexed: 01/21/2023]
Abstract
The purpose of this study was to further evaluate the therapeutic efficacy of convection enhanced delivery (CED) of carboplatin in combination with radiotherapy for treatment of the F98 rat glioma. Tumor cells were implanted stereotactically into the brains of syngeneic Fischer rats, and 13 or 17 d. later carboplatin (20 μg/10 μl) was administered by either CED over 30 min or by Alzet osmotic pumps (0.5 μg/μl/h for 168 h.) beginning at 7 d after tumor implantation. Rats were irradiated with a 15 Gy fractionated dose (5 Gy × 3) of 6 MV photons to the whole brain beginning on the day after drug administration. Other groups of rats received either carboplatin or X-irradiation alone. The tumor carboplatin concentration following CED of 20 μg in 10 μl was 10.4 μg/g, which was equal to that observed following i.v. administration of 100 mg/kg b.w. Rats bearing small tumors, treated with carboplatin and X-irradiation, had a mean survival time (MST) of 83.4 d following CED and 111.8 d following pump delivery with 40% of the latter surviving >180 d (i.e. cured) compared to 55.2 d for CED and 77.2 d. for pump delivery of carboplatin alone and 31.8 d and 24.2 d, respectively, for X-irradiated and untreated controls. There was no microscopic evidence of residual tumor in the brains of all long-term survivors. Not surprisingly, rats with large tumors had much shorter MSTs. Only modest increases in MSTs were observed in animals that received either oral administration or CED of temozolomide plus X-irradiation (23.2 d and 29.3 d) compared to X-irradiation alone. The present survival data, and those previously reported by us, are among the best ever obtained with the F98 glioma model. Initially, they could provide a platform for a Phase I clinical trial to evaluate the safety and potential therapeutic efficacy of CED of carboplatin in patients with recurrent glioblastomas, and ultimately a Phase II trial of carboplatin in combination with radiation therapy.
Collapse
Affiliation(s)
- Weilian Yang
- Department of Pathology, The Ohio State University, 165 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Huynh GH, Deen DF, Szoka FC. Barriers to carrier mediated drug and gene delivery to brain tumors. J Control Release 2006; 110:236-259. [PMID: 16318895 DOI: 10.1016/j.jconrel.2005.09.053] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 09/29/2005] [Indexed: 01/18/2023]
Abstract
Brain tumor patients face a poor prognosis despite significant advances in tumor imaging, neurosurgery and radiation therapy. Potent chemotherapeutic drugs fail when used to treat brain tumors because biochemical and physiological barriers limit drug delivery into the brain. In the past decade a number of strategies have been introduced to increase drug delivery into the brain parenchyma. In particular, direct drug administration into the brain tumor has shown promising results in both animal models and clinical trials. This technique is well suited for the delivery of liposome and polymer drug carriers, which have the potential to provide a sustained level of drug and to reach cellular targets with improved specificity. We will discuss the current approaches that have been used to increase drug delivery into the brain parenchyma in the context of fluid and solute transport into, through and from the brain, with a focus on liposome and polymer drug carriers.
Collapse
Affiliation(s)
- Grace H Huynh
- Joint Graduate Group in Bioengineering, University of California at San Francisco and Berkeley San Francisco, CA 94143-0446, United States
| | - Dennis F Deen
- Brain Tumor Research Center of the Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA 94143-0520, United States
| | - Francis C Szoka
- Joint Graduate Group in Bioengineering, University of California at San Francisco and Berkeley San Francisco, CA 94143-0446, United States; Departments of Pharmaceutical Chemistry and Biopharmaceutical Sciences, University of California at San Francisco, San Francisco, CA 94143-0446, United States.
| |
Collapse
|
9
|
Manunta ML, Gavini E, Chessa G, Passino ES, Careddu GM, Giua S, Mollica A, Demontis MP, Leoni A, Muzzetto P. Carboplatin Sustained Delivery System Using Injectable Microspheres. ACTA ACUST UNITED AC 2005; 52:416-22. [PMID: 16176573 DOI: 10.1111/j.1439-0442.2005.00751.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A controlled carboplatin delivery system using biodegradable polymer has been used in this study. The purpose was to evaluate the local and systemic effects of injectable, biodegradable microspheres containing carboplatin when injected as aqueous suspension subcutaneously in rats. Biocompatibility and toxicity of empty microspheres and microspheres loaded with carboplatin were evaluated by clinical and histological examination. The diffusion of carboplatin in tissues and time of drug release were evaluated by platinum determination in plasma and tissues over the time. The results of the study suggest that microspheres provide a sustained slow release of carboplatin and that multiple inoculations of microspheres containing drug and no evidence of local or systemic toxicity is found. This device may be useful in the treatment of solid tumours.
Collapse
Affiliation(s)
- M L Manunta
- Department of Surgery, School of Veterinary Medicine, University of Sassari, Sassari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Menei P, Montero-Menei C, Venier MC, Benoit JP. Drug delivery into the brain using poly(lactide-co-glycolide) microspheres. Expert Opin Drug Deliv 2005; 2:363-76. [PMID: 16296760 DOI: 10.1517/17425247.2.2.363] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Among the strategies developed for drug delivery into the CNS, locally controlled drug release by the way of an implantable polymeric device has been developed in recent years. The first polymeric devices developed were macroscopic implants needing open surgery for implantation. Over the last few years, poly(lactide-co-glycolide) microspheres have been shown to be safe and promising for drug delivery into the brain. Poly(lactide-co-glycolide) is biodegradable and biocompatible with brain tissue. Due to their size, these microspheres can be easily implanted by stereotaxy in discrete, precise and functional areas of the brain without causing damage to the surrounding -tissue. Brain tumour treatments have been developed using this approach and clinical trials have been performed. Potential applications in neurodegenerative diseases have also been explored, particularly neurotrophic factor delivery and cell therapy.
Collapse
Affiliation(s)
- Philippe Menei
- Centre Hospitalo-Universitaire, Departement de Neurochirurgie, Angers, France.
| | | | | | | |
Collapse
|
11
|
Westphal M, Lamszus K, Hilt D. Intracavitary Chemotherapy for Glioblastoma: Present Status and Future Directions. LOCAL THERAPIES FOR GLIOMA PRESENT STATUS AND FUTURE DEVELOPMENTS 2003; 88:61-7. [PMID: 14531563 DOI: 10.1007/978-3-7091-6090-9_11] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Considerable efforts have been invested to improve local control of the glioma disease although its infiltrative nature leading to whole brain involvement is a fundamental characteristic and antagonistic to this endeavour. The typically local recurrence of glioblastoma in about 80% of the cases has prompted intracavitary treatments of which presently only a biodegradable wafer containing carmustine has shown statistically significant benefit regarding survival in three phase III trials. Based on that proof of principle, many new developments are attempting to improve on this concept, introducing different agents with otherwise high systemic toxicity and poor penetration. New pharmacological formulations offer longer sustained release, better adaptation to the geometry of the resection cavity, and allow repeated administration. Should local recurrence become effectively controlled, significant progress can be made to increase survival with very limited local and virtually no systemic side effects. Since all agents so far show only limited activity against solid tumor, complete resection seems to be the prerequisite for effective local therapies.
Collapse
Affiliation(s)
- M Westphal
- Klinik und Poliklinik für Neurochirurgie, Universitätskrankenhaus Hamburg Eppendorf, Hamburg, Germany.
| | | | | |
Collapse
|