1
|
Chow-Shi-Yée M, Grondin M, Ouellet F, Averill-Bates DA. Control of stress-induced apoptosis by freezing tolerance-associated wheat proteins during cryopreservation of rat hepatocytes. Cell Stress Chaperones 2020; 25:869-886. [PMID: 32529603 PMCID: PMC7591654 DOI: 10.1007/s12192-020-01115-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/14/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cryopreservation is used for long-term storage of cells and tissues. Cryoprotectants such as dimethyl disulfoxide (DMSO) are used to protect cells against freeze-thaw damage. Despite the use of cryoprotectants, hepatocytes are sensitive to stresses imposed by freeze and thaw processes, which cause physical damage, loss of functionality, or cell death. As an alternative, we have developed new technology using several recombinant wheat proteins as cryoprotectants: TaENO (enolase), TaBAS1 (2-Cys peroxiredoxin), and a combination of WCS120 (dehydrin) with TaIRI-2 (inhibitor of ice recrystallization). This study aims to understand the mechanisms by which these plant proteins protect rat hepatocytes against cell death incurred during cryopreservation. Our analysis revealed that for cells cryopreserved with DMSO, cell death occurred by apoptosis and necrosis. Apoptosis was detected by activation of effector caspases-3 and -7, PARP cleavage, and nuclear chromatin condensation. These apoptotic events were inhibited when hepatocytes were cryopreserved with the different plant proteins. Cryopreservation with DMSO activated apoptosis through the mitochondrial pathway: the Bax/Bcl-2 protein ratio increased, mitochondrial membrane potential decreased, and initiator caspase-9 was activated. Furthermore, the endoplasmic reticulum pathway of apoptosis was activated: levels of the chaperone Bip/GRP78 decreased, pro-apoptotic transcription factor CHOP was induced, and initiator caspase-12 was activated. Activation of the mitochondrial and endoplasmic reticulum pathways of apoptosis was attenuated when hepatocytes were cryopreserved with the different recombinant proteins. This study improves understanding of mechanisms of cryoprotection provided by these plant proteins during freezing stress. These proteins are natural products and show promising potential by decreasing cell death during cryopreservation of hepatocytes.
Collapse
Affiliation(s)
- Mélanie Chow-Shi-Yée
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Melanie Grondin
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Francois Ouellet
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Diana A Averill-Bates
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada.
| |
Collapse
|
2
|
Chow-Shi-Yée M, Briard JG, Grondin M, Averill-Bates DA, Ben RN, Ouellet F. Inhibition of ice recrystallization and cryoprotective activity of wheat proteins in liver and pancreatic cells. Protein Sci 2016; 25:974-86. [PMID: 26889747 DOI: 10.1002/pro.2903] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/09/2016] [Accepted: 02/12/2016] [Indexed: 01/08/2023]
Abstract
Efficient cryopreservation of cells at ultralow temperatures requires the use of substances that help maintain viability and metabolic functions post-thaw. We are developing new technology where plant proteins are used to substitute the commonly-used, but relatively toxic chemical dimethyl sulfoxide. Recombinant forms of four structurally diverse wheat proteins, TaIRI-2 (ice recrystallization inhibition), TaBAS1 (2-Cys peroxiredoxin), WCS120 (dehydrin), and TaENO (enolase) can efficiently cryopreserve hepatocytes and insulin-secreting INS832/13 cells. This study shows that TaIRI-2 and TaENO are internalized during the freeze-thaw process, while TaBAS1 and WCS120 remain at the extracellular level. Possible antifreeze activity of the four proteins was assessed. The "splat cooling" method for quantifying ice recrystallization inhibition activity (a property that characterizes antifreeze proteins) revealed that TaIRI-2 and TaENO are more potent than TaBAS1 and WCS120. Because of their ability to inhibit ice recrystallization, the wheat recombinant proteins TaIRI-2 and TaENO are promising candidates and could prove useful to improve cryopreservation protocols for hepatocytes and insulin-secreting cells, and possibly other cell types. TaENO does not have typical ice-binding domains, and the TargetFreeze tool did not predict an antifreeze capacity, suggesting the existence of nontypical antifreeze domains. The fact that TaBAS1 is an efficient cryoprotectant but does not show antifreeze activity indicates a different mechanism of action. The cryoprotective properties conferred by WCS120 depend on biochemical properties that remain to be determined. Overall, our results show that the proteins' efficiencies vary between cell types, and confirm that a combination of different protection mechanisms is needed to successfully cryopreserve mammalian cells.
Collapse
Affiliation(s)
- Mélanie Chow-Shi-Yée
- Département Des Sciences Biologiques, Université Du Québec À Montréal, Montréal, Canada
| | - Jennie G Briard
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Mélanie Grondin
- Département Des Sciences Biologiques, Université Du Québec À Montréal, Montréal, Canada
| | - Diana A Averill-Bates
- Département Des Sciences Biologiques, Université Du Québec À Montréal, Montréal, Canada
| | - Robert N Ben
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - François Ouellet
- Département Des Sciences Biologiques, Université Du Québec À Montréal, Montréal, Canada
| |
Collapse
|
3
|
Plant protein 2-Cys peroxiredoxin TaBAS1 alleviates oxidative and nitrosative stresses incurred during cryopreservation of mammalian cells. Biotechnol Bioeng 2016; 113:1511-21. [DOI: 10.1002/bit.25921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/28/2015] [Accepted: 12/28/2015] [Indexed: 12/20/2022]
|
4
|
Drug-induced cholestasis detection in cryopreserved rat hepatocytes in sandwich culture. J Pharmacol Toxicol Methods 2015; 73:63-71. [DOI: 10.1016/j.vascn.2015.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/04/2015] [Accepted: 03/16/2015] [Indexed: 12/17/2022]
|
5
|
Grondin M, Chow-Shi-Yée M, Ouellet F, Averill-Bates DA. Wheat enolase demonstrates potential as a non-toxic cryopreservation agent for liver and pancreatic cells. Biotechnol J 2015; 10:801-10. [DOI: 10.1002/biot.201400562] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/28/2015] [Accepted: 03/04/2015] [Indexed: 11/08/2022]
|
6
|
Solanas E, Sostres C, Serrablo A, García-Gil A, Aranguren F, Jimenez P, Serrano MT. Incubation with dimethyl sulfoxide prior to cryopreservation improves functionality of thawed human primary hepatocytes. Biopreserv Biobank 2015; 10:446-53. [PMID: 24845046 DOI: 10.1089/bio.2012.0015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Efficient cryopreservation of human hepatocytes is essential for their use in cell therapy. This study investigated the effects of adding melatonin and/or dimethyl sulfoxide (DMSO) to pre-incubation and/or freezing solutions on the viability and function of thawed human hepatocytes. METHODS Isolated human hepatocytes were pre-incubated for 90 min at 4°C in Williams' Medium E (WEM), WEM containing 5 mM melatonin dissolved in DMSO, or WEM containing the equivalent amount of DMSO (1%). The hepatocytes were frozen in University of Wisconsin solution (UW) and 10% DMSO, with or without 5 mM melatonin. After thawing, viability, plating efficiency, mitochondrial dehydrogenase activity (MTT), and albumin and urea production were analyzed. RESULTS Viability and plating efficiency were not affected by melatonin or DMSO in pre-incubation media. Unexpectedly, hepatocytes pre-incubated with DMSO had significantly higher MTT (29.7% vs. control, p<0.01), albumin (82.8% vs. control, p<0.05), and urea amounts (26.2% vs. control, p=0.06) than those incubated only with WEM. Hepatocytes pre-incubated in media containing melatonin had amounts between those of cells incubated with DMSO or only with WEM (p<0.05 for MTT and p>0.05 for albumin and urea values). Also, the addition of melatonin to the freezing media did not significantly improve any of the studied parameters (p>0.05). DISCUSSION Adding 1% DMSO to pre-incubation media prior to the cryopreservation of human hepatocytes preserves hepatocyte function after thawing. These findings could be considered in current hepatocyte cryopreservation protocols.
Collapse
Affiliation(s)
- Estela Solanas
- 1 IIS Aragón, CIBER Enfermedades Hepáticas y Digestivas (CIBERehd). Molecular Research Laboratory , Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|
7
|
Tolosa L, Pareja-Ibars E, Donato MT, Cortés M, López S, Jiménez N, Mir J, Castell JV, Gómez-Lechón MJ. Neonatal livers: a source for the isolation of good-performing hepatocytes for cell transplantation. Cell Transplant 2013; 23:1229-42. [PMID: 23803290 DOI: 10.3727/096368913x669743] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Hepatocyte transplantation is an alternative therapy to orthotopic liver transplantation for the treatment of liver diseases. However, the supply of hepatocytes is limited given the shortage of organs available to isolate good-functioning quality cells. Neonatal livers may be a potential source alternative to adult livers to obtain good-performing hepatic cells for hepatocyte transplantation, which has not yet been explored profoundly. High-yield preparations of viable hepatocytes were isolated from 1- to 23-day-old liver donors, cryopreserved, and banked. Cell integrity and functional quality assessment were performed after thawing. Neonatal hepatocytes showed better postthawing recovery compared with adult hepatocytes, as shown by the viability values that did not differ significantly from freshly isolated cells, a higher expression of adhesion molecules (β1-integrin, β-catenin, and E-cadherin), better attachment efficiency, cell survival, and a lower number of apoptotic cells. The metabolic performance of thawed hepatocytes has been assessed by ureogenesis and drug-metabolizing capability (cytochrome P450 and UDP-glucuronosyltransferase enzymes). CYP2A6, CYP2C9, CYP2E1, and CYP3A4 activities were found in all cell preparations, while CYP1A2, CYP2B6, CYP2C19, and CYP2D6 activities were detected only in hepatocytes from a few neonatal donors. The expression of UGT1A1 and UGT1A9 (transcripts and protein) was detected in all hepatocyte preparations, while activity was measured only in some preparations, probably due to lack of maturity of the enzymes. However, isoforms UGT1A6 and UGT2B7 showed considerable activity in all preparations. Compared to adult liver, the hepatocyte isolation procedure in neonatal livers also provides thawed cell suspensions with a higher proportion of hepatic progenitor cells (EpCAM(+) staining), which could also participate in regeneration of liver parenchyma after transplantation. These results could imply important advantages of neonatal hepatocytes as a source of high-quality cells to improve human hepatocyte transplantation applicability.
Collapse
Affiliation(s)
- Laia Tolosa
- Unidad de Hepatología Experimental, Centro de Investigación, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Cryopreservation of insulin-secreting INS832/13 cells using a wheat protein formulation. Cryobiology 2013; 66:136-43. [DOI: 10.1016/j.cryobiol.2012.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 12/14/2012] [Accepted: 12/15/2012] [Indexed: 11/21/2022]
|
9
|
Malpique R, Tostões R, Beier AFJ, Serra M, Brito C, Schulz JC, Björquist P, Zimmermann H, Alves PM. Surface-based cryopreservation strategies for human embryonic stem cells: a comparative study. Biotechnol Prog 2012; 28:1079-87. [PMID: 22718690 DOI: 10.1002/btpr.1572] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/12/2012] [Indexed: 12/30/2022]
Abstract
Human embryonic stem cells (hESC) hold tremendous potential in the emerging fields of gene and cell therapy as well as in basic scientific research. One of the major challenges regarding their application is the development of efficient cryopreservation protocols for hESC since current methods present poor recovery rates and/or technical difficulties which impair the development of effective processes that can handle bulk quantities of pluripotent cells. The main focus of this work was to compare different strategies for the cryopreservation of adherent hESC colonies. Slow-rate freezing protocols using intact hESC colonies was evaluated and compared with a surface-based vitrification approach. Entrapment within ultra-high viscous alginate was investigated as the main strategy to avoid the commonly observed loss of viability and colony fragmentation during slow-rate freezing. Our results indicate that entrapment beneath a layer of ultra-high viscous alginate does not provide further protection to hESC cryopreserved through slow-rate freezing, irrespectively of the cryomedium used. Vitrification of adherent hESC colonies on culture dishes yielded significantly higher recovery rates when compared to the slow-rate freezing approaches investigated. The pluripotency of hESC was not changed after a vitrification/thawing cycle and during further propagation in culture. In conclusion, from the cryopreservation methods investigated in this study, surface-based vitrification of hESC has proven to be the most efficient for the cryopreservation of intact hESC colonies, reducing the time required to amplify frozen stocks thus supporting the widespread use of these cells in research and clinical applications.
Collapse
|
10
|
Abstract
Cell therapies, which include bioartificial liver support and hepatocyte transplantation, have emerged as potential treatments for a variety of liver diseases. Acute liver failure, acute-on-chronic liver failure, and inherited metabolic liver diseases are examples of liver diseases that have been successfully treated with cell therapies at centers around the world. Cell therapies also have the potential to be widely applied to other liver diseases, including noninherited liver diseases and liver cancer, and to improve the success of liver transplantation. Here we briefly summarize current concepts of cell therapy for liver diseases.
Collapse
Affiliation(s)
- Yue Yu
- Department of Surgery, Division of Experimental Surgery, Mayo Clinic, Rochester, MN,Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - James E. Fisher
- Department of Surgery, Division of Experimental Surgery, Mayo Clinic, Rochester, MN
| | - Joseph B. Lillegard
- Department of Surgery, Division of Experimental Surgery, Mayo Clinic, Rochester, MN
| | - Brian Rodysill
- Department of Surgery, Division of Experimental Surgery, Mayo Clinic, Rochester, MN
| | | | - Scott L. Nyberg
- Department of Surgery, Division of Experimental Surgery, Mayo Clinic, Rochester, MN
| |
Collapse
|
11
|
Influence of platelet lysate on the recovery and metabolic performance of cryopreserved human hepatocytes upon thawing. Transplantation 2011; 91:1340-6. [PMID: 21516066 DOI: 10.1097/tp.0b013e31821aba37] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Storage of human hepatocytes is essential for their use in research and liver cell transplantation. However, cryopreservation and thawing (C/T) procedures have detrimental effects on the viability and functionality compared with fresh cells. The aim of this study was to upgrade the standard C/T methodology to obtain better quality hepatocytes for cell transplantation to improve the overall clinical outcome. METHODS Human hepatocytes isolated from donor livers were cryopreserved in University of Wisconsin solution with 10% dimethyl sulfoxide (standard medium), which was supplemented with 10% or 20% of platelet lysate. Thawing media supplemented with up to 30 mM glucose was also investigated. The effects on cell viability, adhesion proteins (e-cadherin, β-catenin, and β1-integrin) expression, attachment efficiency, apoptotic indicators, Akt signaling, ATP levels, and cytochrome P450 activities have been evaluated. RESULTS The results indicate that the hepatocytes cryopreserved in a medium supplemented with platelet lysate show better recovery than those preserved in the standard medium: higher expression of adhesion molecules, higher attachment efficiency and cell survival; decreased number of apoptotic nuclei and caspase-3 activation; maintenance of ATP levels; and drug biotransformation capability close to those in fresh hepatocytes. Supplementation of thawing media with glucose led to a significant decrease in caspase-3 activation and to increased adhesion molecules preservation and Akt signal transduction after C/T. Minor nonsignificant changes in cell viability and attachment efficiency were observed. CONCLUSIONS These promising results could lead to a new cryopreservation procedure to improve human hepatocyte cryopreservation outcome.
Collapse
|
12
|
Mingoia RT, Glover KP, Nabb DL, Yang CH, Snajdr SI, Han X. Cryopreserved hepatocytes from rainbow trout (Oncorhynchus mykiss): a validation study to support their application in bioaccumulation assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:3052-3058. [PMID: 20196591 DOI: 10.1021/es903909g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Determination of biotransformation rates of xenobiotics in freshly isolated trout hepatocytes has been demonstrated to significantly improve the performance of bioaccumulation assessment models. In order to promote this in vitro approach, trout hepatocytes need to be cryopreserved to facilitate their availability while ensuring their metabolic competency. In the present study, we obtained basal level metabolic enzyme activities for cytochrome P450 (CYP) 1A, CYP3A, glutathione-S-transferase, and uridine 5'-diphospho-glucuronosyltransferase from trout hepatocytes cryopreserved for various periods of time up to three months and compared their values with those obtained from freshly isolated hepatocytes. Similarly, we compared intrinsic clearance (CL(int)) values determined in cryopreserved trout hepatocytes to those determined in freshly isolated hepatocytes for reference compounds molinate, michler's ketone, 4-nonylphenol, 2,4-ditert-butylphenol, benzo(a)pyrene, and pyrene. Our results show that cryopreserved trout hepatocytes maintained greater than 75% of their basal level enzyme activities and greater than 72% of xenobiotic biotransformation capabilities, regardless of the length of cryostorage. As a result, bioconcentration factors of the reference compounds were adequately predicted based on the CL(int) values. We simulated the condition for shipping cryopreserved trout hepatocytes and demonstrated that 24 h dry ice storage did not negatively affect the rates of xenobiotic biotransformation. We conclude that cryopreserved trout hepatocytes are suitable for biotransformation rate determination of xenobiotics in vitro, and therefore, are an acceptable alternative to freshly isolated trout hepatocytes in the application in bioaccumulation assessment.
Collapse
Affiliation(s)
- Robert T Mingoia
- DuPont Haskell Global Centers for Health & Environmental Sciences, Newark, Delaware, USA
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Liver cell transplantation presents clinical benefit in patients with inborn errors of metabolism as an alternative, or at least as a bridge, to orthotopic liver transplantation. The success of such a therapeutic approach remains limited by the quality of the transplanted cells. Cryopreservation remains the best option for long-term storage of hepatocytes, providing a permanent and sufficient cell supply. However, isolated adult hepatocytes are poorly resistant to such a process, with a significant alteration both at the morphological and functional levels. Hence, the aim of the current review is to discuss the state of the art regarding widely-used hepatocyte cryopreservation protocols, as well as the assays performed to analyse the post-thawing cell quality both in vitro and in vivo. The majority of studies agree upon the poor quality and efficiency of cryopreserved/thawed hepatocytes as compared to freshly isolated hepatocytes. Intracellular ice formation or exposure to hyperosmotic solutions remains the main phenomenon of cryopreservation process, and its effects on cell quality and cell death induction will be discussed. The increased knowledge and understanding of the cryopreservation process will lead to research strategies to improve the viability and the quality of the cell suspensions after thawing. Such strategies, such as vitrification, will be discussed with respect to their potential to significantly improve the quality of cell suspensions dedicated to liver cell-based therapies.
Collapse
|