1
|
Syed Mohamed SMD, Welsh GI, Roy I. Renal tissue engineering for regenerative medicine using polymers and hydrogels. Biomater Sci 2023; 11:5706-5726. [PMID: 37401545 DOI: 10.1039/d3bm00255a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Chronic Kidney Disease (CKD) is a growing worldwide problem, leading to end-stage renal disease (ESRD). Current treatments for ESRD include haemodialysis and kidney transplantation, but both are deemed inadequate since haemodialysis does not address all other kidney functions, and there is a shortage of suitable donor organs for transplantation. Research in kidney tissue engineering has been initiated to take a regenerative medicine approach as a potential treatment alternative, either to develop effective cell therapy for reconstruction or engineer a functioning bioartificial kidney. Currently, renal tissue engineering encompasses various materials, mainly polymers and hydrogels, which have been chosen to recreate the sophisticated kidney architecture. It is essential to address the chemical and mechanical aspects of the materials to ensure they can support cell development to restore functionality and feasibility. This paper reviews the types of polymers and hydrogels that have been used in kidney tissue engineering applications, both natural and synthetic, focusing on the processing and formulation used in creating bioactive substrates and how these biomaterials affect the cell biology of the kidney cells used.
Collapse
Affiliation(s)
| | - Gavin I Welsh
- Renal Bristol, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S37HQ, UK.
| |
Collapse
|
2
|
Payushina OV, Tsomartova DA, Chereshneva YV, Ivanova MY, Lomanovskaya TA, Pavlova MS, Kuznetsov SL. Experimental Transplantation of Mesenchymal Stromal Cells as an Approach to Studying Their Differentiation In Vivo (Review). BIOL BULL+ 2022. [DOI: 10.1134/s1062359022060127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Khalil F, Alwan A, Ralph P, Soliman S, Abdelrahim EA, Abdelhafez EA, Opara EC. Effect of Alginate Microbead Encapsulation of Placental Mesenchymal Stem Cells on Their Immunomodulatory Function. Ann Biomed Eng 2022; 50:291-302. [DOI: 10.1007/s10439-022-02920-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022]
|
4
|
Deng WS, Liu XY, Ma K, Liang B, Liu YF, Wang RJ, Chen XY, Zhang S. Recovery of motor function in rats with complete spinal cord injury following implantation of collagen/silk fibroin scaffold combined with human umbilical cord-mesenchymal stem cells. Rev Assoc Med Bras (1992) 2021; 67:1342-1348. [PMID: 34816932 DOI: 10.1590/1806-9282.20200697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE This study aimed to assess the effect of the collagen/silk fibroin scaffolds seeded with human umbilical cord-mesenchymal stem cells on functional recovery after acute complete spinal cord injury. METHODS The fibroin and collagen were mixed (mass ratio, 3:7), and the composite scaffolds were produced. Forty rats were randomly divided into the Sham group (without spinal cord injury), spinal cord injury group (spinal cord transection without any implantation), collagen/silk fibroin scaffolds group (spinal cord transection with implantation of the collagen/silk fibroin scaffolds), and collagen/silk fibroin scaffolds + human umbilical cord-mesenchymal stem cells group (spinal cord transection with the implantation of the collagen/silk fibroin scaffolds co-cultured with human umbilical cord-mesenchymal stem cells). Motor evoked potential, Basso-Beattie-Bresnahan scale, modified Bielschowsky's silver staining, and immunofluorescence staining were performed. RESULTS The BBB scores in the collagen/silk fibroin scaffolds + human umbilical cord-mesenchymal stem cells group were significantly higher than those in the spinal cord injury and collagen/silk fibroin scaffolds groups (p<0.05 or p<0.01). The amplitude and latency were markedly improved in the collagen/silk fibroin scaffolds + human umbilical cord-mesenchymal stem cells group compared with the spinal cord injury and collagen/silk fibroin scaffolds groups (p<0.05 or p<0.01). Meanwhile, compared to the spinal cord injury and collagen/silk fibroin scaffolds groups, more neurofilament positive nerve fiber ensheathed by myelin basic protein positive structure at the injury site were observed in the collagen/silk fibroin scaffolds + human umbilical cord-mesenchymal stem cells group (p<0.01, p<0.05). The results of Bielschowsky's silver staining indicated more nerve fibers was observed at the lesion site in the collagen/silk fibroin scaffolds + human umbilical cord-mesenchymal stem cells group compared with the spinal cord injury and collagen/silk fibroin scaffolds groups (p<0.01, p< 0.05). CONCLUSION The results demonstrated that the transplantation of human umbilical cord-mesenchymal stem cells on a collagen/silk fibroin scaffolds could promote nerve regeneration, and recovery of neurological function after acute spinal cord injury.
Collapse
Affiliation(s)
- Wu-Sheng Deng
- Gansu University of Chinese Medicine, College of Integrated Traditional Chinese and Western Medicine - Gansu Province, China
| | - Xiao-Yin Liu
- Pingjin Hospital Brain Center, Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of Chinese People's Armed Police Force - Tianjin, China.,Sichuan University, West China Hospital, Department of Neurosurgery - Chengdu, China
| | - Ke Ma
- Pingjin Hospital Brain Center, Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of Chinese People's Armed Police Force - Tianjin, China
| | - Bing Liang
- Pingjin Hospital Brain Center, Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of Chinese People's Armed Police Force - Tianjin, China
| | - Ying-Fu Liu
- Cangzhou nanobody technology innovation center - Cangzhou, China
| | - Ren-Jie Wang
- Pingjin Hospital Brain Center, Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of Chinese People's Armed Police Force - Tianjin, China
| | - Xu-Yi Chen
- Pingjin Hospital Brain Center, Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of Chinese People's Armed Police Force - Tianjin, China
| | - Sai Zhang
- Pingjin Hospital Brain Center, Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of Chinese People's Armed Police Force - Tianjin, China
| |
Collapse
|
5
|
Wang S, Feng X, Liu P, Wei Y, Xiao B. Blending of PLGA-PEG-PLGA for Improving the Erosion and Drug Release Profile of PCL Microspheres. Curr Pharm Biotechnol 2020; 21:1079-1087. [PMID: 31893987 DOI: 10.2174/1389201021666200101104116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/10/2019] [Accepted: 12/26/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND PCL has a long history as an industrialized biomaterial for preparing microspheres, but its hydrophobic property and slow degradation rate often cause drug degeneration, quite slow drug release rate and undesirable tri-phasic release profile. MATERIALS AND METHODS In this study, we used the blending material of PLGA-PEG-PLGA and PCL to prepare microspheres. The microspheres degradation and drug release behaviors were evaluated through their molecular weight reduction rate, mass loss rate, morphology erosion and drug release profile. The hydrophilic PLGA-PEG-PLGA is expected to improve the degradation and drug release behaviors of PCL microspheres. RESULTS Microspheres in blending materials exhibited faster erosion rates than pure PCL microspheres, forming holes much quickly on the particle's surface for the drug to diffuse out. A higher proportion of PLGA-PEG-PLGA caused faster degradation and erosion rates. The blending microspheres showed much faster drug release rates than pure PCL microspheres. CONCLUSION With blending of 25wt% PLGA-PEG-PLGA, the release rate of microspheres speeded up significantly, while, with a further increase of PLGA-PEG-PLGA proportion (50%, 75%, 100%), it accelerated a little. The microspheres with PCL/PLGA-PEG-PLGA of 1/1 exhibited a linear-like drug release profile. The results could be a guideline for preparing microspheres based on blending materials to obtain a desirable release.
Collapse
Affiliation(s)
- Siyuan Wang
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430077, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
| | - Ping Liu
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430077, China
| | - Youxiu Wei
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430077, China
| | - Baojun Xiao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
| |
Collapse
|
6
|
Bushkalova R, Farno M, Tenailleau C, Duployer B, Cussac D, Parini A, Sallerin B, Girod Fullana S. Alginate-chitosan PEC scaffolds: A useful tool for soft tissues cell therapy. Int J Pharm 2019; 571:118692. [DOI: 10.1016/j.ijpharm.2019.118692] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/13/2019] [Accepted: 09/09/2019] [Indexed: 12/28/2022]
|
7
|
Optically Transparent Anionic Nanofibrillar Cellulose Is Cytocompatible with Human Adipose Tissue-Derived Stem Cells and Allows Simple Imaging in 3D. Stem Cells Int 2019; 2019:3106929. [PMID: 31687032 PMCID: PMC6800951 DOI: 10.1155/2019/3106929] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
The anti-inflammatory and immunomodulatory properties of human mesenchymal stromal cells (MSCs) are a focus within regenerative medicine. However, 2D cultivation of MSCs for extended periods results in abnormal cell polarity, chromosomal changes, reduction in viability, and altered differentiation potential. As an alternative, various 3D hydrogels have been developed which mimic the endogenous niche of MSCs. Nevertheless, imaging cells embedded within 3D hydrogels often suffers from low signal-to-noise ratios which can be at least partly attributed to the high light absorbance and light scattering of the hydrogels in the visible light spectrum. In this study, human adipose tissue-derived MSCs (ADSCs) are cultivated within an anionic nanofibrillar cellulose (aNFC) hydrogel. It is demonstrated that aNFC forms nanofibres arranged as a porous network with low light absorbance in the visible spectrum. Moreover, it is shown that aNFC is cytocompatible, allowing for MSC proliferation, maintaining cell viability and multilineage differentiation potential. Finally, aNFC is compatible with scanning electron microscopy (SEM) and light microscopy including the application of conventional dyes, fluorescent probes, indirect immunocytochemistry, and calcium imaging. Overall, the results indicate that aNFC represents a promising 3D material for the expansion of MSCs whilst allowing detailed examination of cell morphology and cellular behaviour.
Collapse
|
8
|
Azandeh S, Nejad DB, Bayati V, Shakoor F, Varaa N, Cheraghian B. High mannoronic acid containing alginate affects the differentiation of Wharton's jelly-derived stem cells to hepatocyte-like cell. J Adv Pharm Technol Res 2019; 10:9-15. [PMID: 30815382 PMCID: PMC6383346 DOI: 10.4103/japtr.japtr_312_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
For transplantation of cell into injured tissues, cells should be transferred to the damaged site through an adequate carrier. Nevertheless, the nutrient-limited and hypoxic condition in the carrier can bring about broad cell death. This study set to assess the impact of alginate concentrations on the differentiation and the proliferation of cells encapsulated in alginate hydrogels. Human Wharton's Jelly-derived Mesenchymal Stem Cells (HWJ-MSCs) were encapsulated in two concentrations of alginate hydrogel. Then, the proliferation and the hepatic differentiation were evaluated with an MTT assay and the enzyme-linked immunosorbent assay software and urea production. The results demonstrated that the proliferation of cell and urea production in 1.5% alginate concentration was higher than in 2.5% alginate concentration in the hydrogels of alginate. We deduce that the optimized alginate hydrogel concentration is necessary for achieving comparable cell activities in three-dimensional culture.
Collapse
Affiliation(s)
- Saeed Azandeh
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Darioush Bijan Nejad
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Bayati
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Foroug Shakoor
- Department of Anatomical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Negar Varaa
- Department of Anatomical Science, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Bahman Cheraghian
- Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Montanucci P, Pescara T, Alunno A, Bistoni O, Basta G, Calafiore R. Remission of hyperglycemia in spontaneously diabetic NOD mice upon transplant of microencapsulated human umbilical cord Wharton jelly‐derived mesenchymal stem cells (hUCMS). Xenotransplantation 2018; 26:e12476. [DOI: 10.1111/xen.12476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/30/2018] [Accepted: 11/12/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Pia Montanucci
- Section of Cardiovascular, Endocrine and Metabolic Clinical Physiology, and Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Department of Medicine University of Perugia Perugia Italy
| | - Teresa Pescara
- Section of Cardiovascular, Endocrine and Metabolic Clinical Physiology, and Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Department of Medicine University of Perugia Perugia Italy
| | - Alessia Alunno
- Section of Rheumatology, Department of Medicine University of Perugia Perugia Italy
| | - Onelia Bistoni
- Section of Rheumatology, Department of Medicine University of Perugia Perugia Italy
| | - Giuseppe Basta
- Section of Cardiovascular, Endocrine and Metabolic Clinical Physiology, and Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Department of Medicine University of Perugia Perugia Italy
| | - Riccardo Calafiore
- Section of Cardiovascular, Endocrine and Metabolic Clinical Physiology, and Laboratory for Endocrine Cell Transplants and Biohybrid Organs, Department of Medicine University of Perugia Perugia Italy
| |
Collapse
|
10
|
Choe G, Park J, Jo H, Kim YS, Ahn Y, Lee JY. Studies on the effects of microencapsulated human mesenchymal stem cells in RGD-modified alginate on cardiomyocytes under oxidative stress conditions using in vitro biomimetic co-culture system. Int J Biol Macromol 2018; 123:512-520. [PMID: 30445088 DOI: 10.1016/j.ijbiomac.2018.11.115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/16/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022]
Abstract
Stem cell therapy has been recognized as a promising approach for myocardium regeneration post myocardial infarction (MI); however, it unfortunately often remains a challenge because of poor survival of transplanted cells and a lack of clear understanding of their interactions with host cells. High oxidative stress at heart tissues post MI is considered one of the important factors damaging transplanted cells and native cells/tissues. Here, we employed an in vitro co-culture system, capable of mimicking cases of stem cell transplantation into the myocardium presenting high oxidative stress, using human mesenchymal stem cells (hMSCs) encapsulated in alginate or cell interactive Arg-Gly-Asp (RGD) peptide-modified alginate micro-hydrogels. Under H2O2-induced oxidative stress conditions, viabilities of hMSCs and CMs were significantly higher in their co-culture than in their individual monolayer cultures. Expression of cardiac muscle markers remained high even with H2O2 treatment when cardiomyocytes (CMs) were co-cultured with hMSCs in RGD-alginate. Higher levels of various growth factors (associated with angiogenesis, cardiac regeneration, and contractility) were found in co-culture (noticeably with RGD-alginate) compared to monolayer cultures of CMs or hMSCs. These results can benefit the study of in vivo MI progression with transplanted stem cells and the development of effective stem cell-based therapeutic strategies for various oxidative stress-related diseases.
Collapse
Affiliation(s)
- Goeun Choe
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Hyerim Jo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Yong Sook Kim
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Youngkeun Ahn
- Department of Cardiology, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
11
|
Lopez-Mendez TB, Santos-Vizcaino E, Blanco FJ, Pedraz JL, Hernandez RM, Orive G. Improved control over MSCs behavior within 3D matrices by using different cell loads in both in vitro and in vivo environments. Int J Pharm 2017; 533:62-72. [DOI: 10.1016/j.ijpharm.2017.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 12/19/2022]
|
12
|
Peng Z, Gao W, Yue B, Jiang J, Gu Y, Dai J, Chen L, Shi Q. Promotion of neurological recovery in rat spinal cord injury by mesenchymal stem cells loaded on nerve-guided collagen scaffold through increasing alternatively activated macrophage polarization. J Tissue Eng Regen Med 2017; 12:e1725-e1736. [PMID: 27863083 DOI: 10.1002/term.2358] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 10/03/2016] [Accepted: 11/09/2016] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) are characterized by multidifferentiation and immunoregulatory potential and have been used in the treatment of spinal cord injury (SCI), but direct transplantation may limit effectiveness due to their quick diffusion. The role of macrophages in healing is being increasingly recognized because of their ability to polarize into pro- and anti-inflammatory phenotypes. In the present study, nerve-guide collagen scaffold (CS) combined with rat MSCs was developed. After CS was confirmed to minimize MSC distribution in vivo by positron emission tomography (PET) imaging, the repair capacity of combined implantation of CS and MSCs and the effect on classically activated macrophage/alternatively activated macrophage (M2) polarization was assessed in a hemisected SCI rat model. In vivo studies showed that, compared to the control group, the rats in the combined implantation group exhibited more significant recovery of nerve function evidenced by the 21-point Basso-Beattie-Bresnahan score and footprint analysis. Morphological staining showed less macrophage infiltration, apoptosis and glial fibrillary acidic protein, and more neurofilaments, and the fibres were guided to grow through the implant. More M2 were observed in the combined implantation group. The data suggest that the combined implantation could support MSCs to play a protective role of SCI, not only through inhibiting chronic scar formation and providing linear guidance for the nerve, but also benefitting M2 polarization to form an anti-inflammatory environment. Thus, the combination of biomaterial and MSCs might be a prominent therapeutic treatment for SCI. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zhan Peng
- Department of Orthopedics, the First Affiliated Hospital of Soochow University. Orthopedic Institute, Soochow University, Suzhou, P.R. China
| | - Wei Gao
- Department of Orthopedics, the First Affiliated Hospital of Soochow University. Orthopedic Institute, Soochow University, Suzhou, P.R. China
| | - Bing Yue
- Department of Orthopedics, the First Affiliated Hospital of Soochow University. Orthopedic Institute, Soochow University, Suzhou, P.R. China
| | - Jie Jiang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University. Orthopedic Institute, Soochow University, Suzhou, P.R. China
| | - Yong Gu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University. Orthopedic Institute, Soochow University, Suzhou, P.R. China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Liang Chen
- Department of Orthopedics, the First Affiliated Hospital of Soochow University. Orthopedic Institute, Soochow University, Suzhou, P.R. China
| | - Qin Shi
- Department of Orthopedics, the First Affiliated Hospital of Soochow University. Orthopedic Institute, Soochow University, Suzhou, P.R. China
| |
Collapse
|
13
|
Ceccaldi C, Bushkalova R, Cussac D, Duployer B, Tenailleau C, Bourin P, Parini A, Sallerin B, Girod Fullana S. Elaboration and evaluation of alginate foam scaffolds for soft tissue engineering. Int J Pharm 2017; 524:433-442. [DOI: 10.1016/j.ijpharm.2017.02.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 01/18/2023]
|
14
|
Gaihre B, Jayasuriya AC. Fabrication and characterization of carboxymethyl cellulose novel microparticles for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:733-43. [PMID: 27612767 DOI: 10.1016/j.msec.2016.07.060] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/06/2016] [Accepted: 07/20/2016] [Indexed: 11/15/2022]
Abstract
In this study we developed carboxymethyl cellulose (CMC) microparticles through ionic crosslinking with the aqueous ion complex of zirconium (Zr) and further complexing with chitosan (CS) and determined the physio-chemical and biological properties of these novel microparticles. In order to assess the role of Zr, microparticles were prepared in 5% and 10% (w/v) zirconium tetrachloride solution. Scanning electron microscopy (SEM) with energy dispersive X-ray spectrometer (EDS) results showed that Zr was uniformly distributed on the surface of the microparticles as a result of which uniform groovy surface was obtained. We found that Zr enhances the surface roughness of the microparticles and stability studies showed that it also increases the stability of microparticles in phosphate buffered saline. The crosslinking of anionic CMC with cationic Zr and CS was confirmed by Fourier transform infrared spectroscopy (FTIR) results. The response of murine pre-osteoblasts (OB-6) when cultured with microparticles was investigated. Live/dead cell assay showed that microparticles did not induce any cytotoxic effects as cells were attaching and proliferating on the well plate as well as along the surface of microparticles. In addition, SEM images showed that microparticles support the attachment of cells and they appeared to be directly interacting with the surface of microparticle. Within 10days of culture most of the top surface of microparticles was covered with a layer of cells indicating that they were proliferating well throughout the surface of microparticles. We observed that Zr enhances the cell attachment and proliferation as more cells were present on microparticles with 10% Zr. These promising results show the potential applications of CMC-Zr microparticles in bone tissue engineering.
Collapse
Affiliation(s)
- Bipin Gaihre
- Department of Bioengineering, The University of Toledo, Toledo, OH 43614, USA
| | - Ambalangodage C Jayasuriya
- Department of Bioengineering, The University of Toledo, Toledo, OH 43614, USA; Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH 43614, USA.
| |
Collapse
|
15
|
Gustafson CT, Boakye-Agyeman F, Brinkman CL, Reid JM, Patel R, Bajzer Z, Dadsetan M, Yaszemski MJ. Controlled Delivery of Vancomycin via Charged Hydrogels. PLoS One 2016; 11:e0146401. [PMID: 26760034 PMCID: PMC4711919 DOI: 10.1371/journal.pone.0146401] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/16/2015] [Indexed: 01/08/2023] Open
Abstract
Surgical site infection (SSI) remains a significant risk for any clean orthopedic surgical procedure. Complications resulting from an SSI often require a second surgery and lengthen patient recovery time. The efficacy of antimicrobial agents delivered to combat SSI is diminished by systemic toxicity, bacterial resistance, and patient compliance to dosing schedules. We submit that development of localized, controlled release formulations for antimicrobial compounds would improve the effectiveness of prophylactic surgical wound antibiotic treatment while decreasing systemic side effects. Our research group developed and characterized oligo(poly(ethylene glycol)fumarate) / sodium methacrylate (OPF/SMA) charged copolymers as biocompatible hydrogel matrices. Here, we report the engineering of this copolymer for use as an antibiotic delivery vehicle in surgical applications. We demonstrate that these hydrogels can be efficiently loaded with vancomycin (over 500 μg drug per mg hydrogel) and this loading mechanism is both time- and charge-dependent. Vancomycin release kinetics are shown to be dependent on copolymer negative charge. In the first 6 hours, we achieved as low as 33.7% release. In the first 24 hours, under 80% of total loaded drug was released. Further, vancomycin release from this system can be extended past four days. Finally, we show that the antimicrobial activity of released vancomycin is equivalent to stock vancomycin in inhibiting the growth of colonies of a clinically derived strain of methicillin-resistant Staphylococcus aureus. In summary, our work demonstrates that OPF/SMA hydrogels are appropriate candidates to deliver local antibiotic therapy for prophylaxis of surgical site infection.
Collapse
Affiliation(s)
- Carl T. Gustafson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Graduate School, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55902, United States of America
- * E-mail:
| | - Felix Boakye-Agyeman
- Pharmacometrics Center, Duke Clinical Research Institute (DCRI), Durham, North Carolina 27705, United States of America
| | - Cassandra L. Brinkman
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic Infectious Disease Research Laboratory, Mayo Clinic, Rochester, Minnesota 55902, United States of America
| | - Joel M. Reid
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Graduate School, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55902, United States of America
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic Infectious Disease Research Laboratory, Mayo Clinic, Rochester, Minnesota 55902, United States of America
| | - Zeljko Bajzer
- Division of Biomathematics, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55902, United States of America
- Division of Biomathematics, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55902, United States of America
| | - Mahrokh Dadsetan
- Division of Orthopaedic Research, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55902, United States of America
| | - Michael J. Yaszemski
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Graduate School, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55902, United States of America
- Division of Orthopaedic Research, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55902, United States of America
| |
Collapse
|
16
|
Leslie SK, Nicolini AM, Sundaresan G, Zweit J, Boyan BD, Schwartz Z. Development of a cell delivery system using alginate microbeads for tissue regeneration. J Mater Chem B 2016; 4:3515-3525. [DOI: 10.1039/c6tb00035e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alginate microbeads incorporating adipose-derived stem cells (ASCs) have potential for delivering viable cells capable of facilitating tissue regeneration.
Collapse
Affiliation(s)
- Shirae K. Leslie
- School of Engineering
- Virginia Commonwealth University
- Richmond
- USA
| | | | | | - Jamal Zweit
- Center for Molecular Imaging
- Department of Radiology
- Virginia Commonwealth University
- Richmond
- USA
| | - Barbara D. Boyan
- School of Engineering
- Virginia Commonwealth University
- Richmond
- USA
- Massey Cancer Center
| | - Zvi Schwartz
- School of Engineering
- Virginia Commonwealth University
- Richmond
- USA
- Massey Cancer Center
| |
Collapse
|
17
|
Montanucci P, Alunno A, Basta G, Bistoni O, Pescara T, Caterbi S, Pennoni I, Bini V, Gerli R, Calafiore R. Restoration of t cell substes of patients with type 1 diabetes mellitus by microencapsulated human umbilical cord Wharton jelly-derived mesenchymal stem cells: An in vitro study. Clin Immunol 2015; 163:34-41. [PMID: 26680606 DOI: 10.1016/j.clim.2015.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/04/2015] [Accepted: 12/08/2015] [Indexed: 12/29/2022]
Abstract
Human umbilical cord Wharton jelly-derived mesenchymal stem cells (hUCMS) might apply to treating chronic autoimmune disorders, as already shown for Sjögren's syndrome, including type 1 diabetes mellitus (T1D). Since naked hUCMS grafts encountered restraints, we enveloped hUCMS, within immunoisolatory microcapsules (CpS-hUCMS), made of our endotoxin-free, clinical grade alginate. We then examined the vitro effects of interferon (IFN)-γ-pretreated CpS-hUCMS on Th17 and Treg of T1D patients (n=15) and healthy controls (n=10). Peripheral blood mononuclear cells (PBMCs) were co-cultured with PBMC/CpS-hUCMS: lymphocyte proliferation was assessed by carboxyfluorescein succinimidyl esther (CFSE) dilution assay, and phenotypic analysis of regulatory and effector Tc was also performed. Cytokine expression was performed by bead array and qPCR on IFN-γ-pretreated hUCMS before PBMCs co-culture. CpS-hUCMS restored a correct Treg/Th17 ratio, relevant to the T1D disease process. In summary, we have preliminarily developed a new biohybrid system, associated with immunoregulatory properties, that is ready for in vivo application.
Collapse
Affiliation(s)
- Pia Montanucci
- Department of Medicine, Section of Cardiovascular, Endocrine and Metabolic Clinical Physiology, Laboratory for Endocrine Cell Transplants and Biohybrid Organs, University of Perugia, Piazzale Gambuli, Perugia, Italy.
| | - Alessia Alunno
- Department of Medicine, Rheumatology Unit, School of Medicine, University of Perugia, Piazzale Gambuli, Perugia, Italy.
| | - Giuseppe Basta
- Department of Medicine, Section of Cardiovascular, Endocrine and Metabolic Clinical Physiology, Laboratory for Endocrine Cell Transplants and Biohybrid Organs, University of Perugia, Piazzale Gambuli, Perugia, Italy.
| | - Onelia Bistoni
- Department of Medicine, Rheumatology Unit, School of Medicine, University of Perugia, Piazzale Gambuli, Perugia, Italy.
| | - Teresa Pescara
- Department of Medicine, Section of Cardiovascular, Endocrine and Metabolic Clinical Physiology, Laboratory for Endocrine Cell Transplants and Biohybrid Organs, University of Perugia, Piazzale Gambuli, Perugia, Italy.
| | - Sara Caterbi
- Department of Medicine, Rheumatology Unit, School of Medicine, University of Perugia, Piazzale Gambuli, Perugia, Italy.
| | - Ilaria Pennoni
- Department of Medicine, Section of Cardiovascular, Endocrine and Metabolic Clinical Physiology, Laboratory for Endocrine Cell Transplants and Biohybrid Organs, University of Perugia, Piazzale Gambuli, Perugia, Italy.
| | - Vittorio Bini
- Department of Medicine, Section of Internal Medicine and Endocrine and Metabolic Sciences, University of Perugia, Piazzale Gambuli, Perugia, Italy.
| | - Roberto Gerli
- Department of Medicine, Rheumatology Unit, School of Medicine, University of Perugia, Piazzale Gambuli, Perugia, Italy.
| | - Riccardo Calafiore
- Department of Medicine, Section of Cardiovascular, Endocrine and Metabolic Clinical Physiology, Laboratory for Endocrine Cell Transplants and Biohybrid Organs, University of Perugia, Piazzale Gambuli, Perugia, Italy.
| |
Collapse
|
18
|
Sun H, Yang HL. Calcium phosphate scaffolds combined with bone morphogenetic proteins or mesenchymal stem cells in bone tissue engineering. Chin Med J (Engl) 2015; 128:1121-7. [PMID: 25881610 PMCID: PMC4832956 DOI: 10.4103/0366-6999.155121] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective: The purpose of this study was to review the current status of calcium phosphate (CaP) scaffolds combined with bone morphogenetic proteins (BMPs) or mesenchymal stem cells (MSCs) in the field of bone tissue engineering (BTE). Date Sources: Data cited in this review were obtained primarily from PubMed and Medline in publications from 1979 to 2014, with highly regarded older publications also included. The terms BTE, CaP, BMPs, and MSC were used for the literature search. Study Selection: Reviews focused on relevant aspects and original articles reporting in vitro and/or in vivo results concerning the efficiency of CaP/BMPs or CaP/MSCs composites were retrieved, reviewed, analyzed, and summarized. Results: An ideal BTE product contains three elements: Scaffold, growth factors, and stem cells. CaP-based scaffolds are popular because of their outstanding biocompatibility, bioactivity, and osteoconductivity. However, they lack stiffness and osteoinductivity. To solve this problem, composite scaffolds of CaP with BMPs have been developed. New bone formation by CaP/BMP composites can reach levels similar to those of autografts. CaP scaffolds are compatible with MSCs and CaP/MSC composites exhibit excellent osteogenesis and stiffness. In addition, a CaP/MSC/BMP scaffold can repair bone defects more effectively than an autograft. Conclusions: Novel BTE products possess remarkable osteoconduction and osteoinduction capacities, and exhibit balanced degradation with osteogenesis. Further work should yield safe, viable, and efficient materials for the repair of bone lesions.
Collapse
Affiliation(s)
| | - Hui-Lin Yang
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Jiangsu 215006, China
| |
Collapse
|
19
|
de Jong R, van Hout GPJ, Houtgraaf JH, Kazemi K, Wallrapp C, Lewis A, Pasterkamp G, Hoefer IE, Duckers HJ. Intracoronary infusion of encapsulated glucagon-like peptide-1-eluting mesenchymal stem cells preserves left ventricular function in a porcine model of acute myocardial infarction. Circ Cardiovasc Interv 2014; 7:673-83. [PMID: 25294400 DOI: 10.1161/circinterventions.114.001580] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Engraftment and survival of stem cells in the infarcted myocardium remain problematic in cell-based therapy for cardiovascular disease. To overcome these issues, encapsulated mesenchymal stem cells (eMSCs) were developed that were transfected to produce glucagon-like peptide-1, an incretin hormone with known cardioprotective effects, alongside MSC endogenous paracrine factors. This study was designed to investigate the efficacy of different doses of intracoronary infusion of eMSC in a porcine model of acute myocardial infarction (AMI). METHODS AND RESULTS One hundred pigs were subjected to a moderate AMI (posterolateral AMI; n=50) or a severe AMI (anterior AMI; n=50), whereupon surviving animals (n=36 moderate, n=33 severe) were randomized to receive either intracoronary infusion of 3 incremental doses of eMSC or Ringers' lactate control. Cardiac function was assessed using invasive hemodynamics, echocardiography, and histological analysis. A trend was observed in the moderate AMI model, whereas in the severe AMI model, left ventricular ejection fraction improved by +9.3% (P=0.004) in the best responding eMSC group, because of a preservation of left ventricular end-systolic volume. Arteriolar density increased 3-fold in the infarct area (8.4±0.9/mm(2) in controls versus 22.2±2.6/mm(2) in eMSC group; P<0.001). Although not statistically significant, capillary density was 30% higher in the border zone (908.1±99.7/mm(2) in control versus 1209.0±64.6/mm(2) in eMSC group; P=ns). CONCLUSIONS eMSCs enable sustained local delivery of cardioprotective proteins to the heart, thereby enhancing angiogenesis and preserving contractile function in an animal AMI model.
Collapse
Affiliation(s)
- Renate de Jong
- From the Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands (R.d.J., J.H.H., K.K.); Experimental Cardiology Laboratory, University and Medical Center Utrecht, The Netherlands (G.P.J.v.H., G.P., I.E.H.); BTG International Germany GmbH, Alzenau, Germany (C.W.); Biocompatibles UK Ltd, a BTG International Group Company, Farnham, United Kingdom (A.L.); and Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands (H.J.D.)
| | - Gerardus P J van Hout
- From the Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands (R.d.J., J.H.H., K.K.); Experimental Cardiology Laboratory, University and Medical Center Utrecht, The Netherlands (G.P.J.v.H., G.P., I.E.H.); BTG International Germany GmbH, Alzenau, Germany (C.W.); Biocompatibles UK Ltd, a BTG International Group Company, Farnham, United Kingdom (A.L.); and Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands (H.J.D.)
| | - Jaco H Houtgraaf
- From the Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands (R.d.J., J.H.H., K.K.); Experimental Cardiology Laboratory, University and Medical Center Utrecht, The Netherlands (G.P.J.v.H., G.P., I.E.H.); BTG International Germany GmbH, Alzenau, Germany (C.W.); Biocompatibles UK Ltd, a BTG International Group Company, Farnham, United Kingdom (A.L.); and Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands (H.J.D.)
| | - Kushan Kazemi
- From the Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands (R.d.J., J.H.H., K.K.); Experimental Cardiology Laboratory, University and Medical Center Utrecht, The Netherlands (G.P.J.v.H., G.P., I.E.H.); BTG International Germany GmbH, Alzenau, Germany (C.W.); Biocompatibles UK Ltd, a BTG International Group Company, Farnham, United Kingdom (A.L.); and Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands (H.J.D.)
| | - Christine Wallrapp
- From the Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands (R.d.J., J.H.H., K.K.); Experimental Cardiology Laboratory, University and Medical Center Utrecht, The Netherlands (G.P.J.v.H., G.P., I.E.H.); BTG International Germany GmbH, Alzenau, Germany (C.W.); Biocompatibles UK Ltd, a BTG International Group Company, Farnham, United Kingdom (A.L.); and Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands (H.J.D.)
| | - Andrew Lewis
- From the Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands (R.d.J., J.H.H., K.K.); Experimental Cardiology Laboratory, University and Medical Center Utrecht, The Netherlands (G.P.J.v.H., G.P., I.E.H.); BTG International Germany GmbH, Alzenau, Germany (C.W.); Biocompatibles UK Ltd, a BTG International Group Company, Farnham, United Kingdom (A.L.); and Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands (H.J.D.)
| | - Gerard Pasterkamp
- From the Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands (R.d.J., J.H.H., K.K.); Experimental Cardiology Laboratory, University and Medical Center Utrecht, The Netherlands (G.P.J.v.H., G.P., I.E.H.); BTG International Germany GmbH, Alzenau, Germany (C.W.); Biocompatibles UK Ltd, a BTG International Group Company, Farnham, United Kingdom (A.L.); and Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands (H.J.D.)
| | - Imo E Hoefer
- From the Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands (R.d.J., J.H.H., K.K.); Experimental Cardiology Laboratory, University and Medical Center Utrecht, The Netherlands (G.P.J.v.H., G.P., I.E.H.); BTG International Germany GmbH, Alzenau, Germany (C.W.); Biocompatibles UK Ltd, a BTG International Group Company, Farnham, United Kingdom (A.L.); and Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands (H.J.D.)
| | - Henricus J Duckers
- From the Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands (R.d.J., J.H.H., K.K.); Experimental Cardiology Laboratory, University and Medical Center Utrecht, The Netherlands (G.P.J.v.H., G.P., I.E.H.); BTG International Germany GmbH, Alzenau, Germany (C.W.); Biocompatibles UK Ltd, a BTG International Group Company, Farnham, United Kingdom (A.L.); and Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands (H.J.D.).
| |
Collapse
|
20
|
Rokstad AMA, Lacík I, de Vos P, Strand BL. Advances in biocompatibility and physico-chemical characterization of microspheres for cell encapsulation. Adv Drug Deliv Rev 2014; 67-68:111-30. [PMID: 23876549 DOI: 10.1016/j.addr.2013.07.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/28/2013] [Accepted: 07/12/2013] [Indexed: 02/06/2023]
Abstract
Cell encapsulation has already shown its high potential and holds the promise for future cell therapies to enter the clinics as a large scale treatment option for various types of diseases. The advancement in cell biology towards this goal has to be complemented with functional biomaterials suitable for cell encapsulation. This cannot be achieved without understanding the close correlation between cell performance and properties of microspheres. The ongoing challenges in the field of cell encapsulation require a critical view on techniques and approaches currently utilized to characterize microspheres. This review deals with both principal subjects of microspheres characterization in the cell encapsulation field: physico-chemical characterization and biocompatibility. The up-to-day knowledge is summarized and discussed with the focus to identify missing knowledge and uncertainties, and to propose the mandatory next steps in characterization of microspheres for cell encapsulation. The primary conclusion of this review is that further success in development of microspheres for cell therapies cannot be accomplished without careful selection of characterization techniques, which are employed in conjunction with biological tests.
Collapse
Affiliation(s)
- Anne Mari A Rokstad
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinasgt. 1, N-7491 Trondheim, Norway; The Central Norway Health Authority (RHA), Trondheim, Norway.
| | - Igor Lacík
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia.
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA11, 9700 RB Groningen, The Netherlands.
| | - Berit L Strand
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinasgt. 1, N-7491 Trondheim, Norway; Department of Biotechnology, NTNU, Sem Saelandsvei 6/8, N-7491 Trondheim, Norway; The Central Norway Health Authority (RHA), Trondheim, Norway.
| |
Collapse
|
21
|
Controlled release of rat adipose-derived stem cells from alginate microbeads. Biomaterials 2013; 34:8172-84. [PMID: 23906513 DOI: 10.1016/j.biomaterials.2013.07.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/03/2013] [Indexed: 01/07/2023]
Abstract
Cell-based therapies have potential for tissue regeneration but poor delivery methods lead to low viability or dispersal of cells from target sites, limiting clinical utility. Here, we developed a degradable and injectable hydrogel to deliver stem cells for bone regeneration. Alginate microbeads <200 μm are injectable, persist at implantation sites and contain viable cells, but do not readily degrade in-vivo. We hypothesized that controlled release of rat adipose-derived stem cells (ASCs) from alginate microbeads can be achieved by incorporating alginate-lyase in the hydrogel. Microbeads were formed using high electrostatic potential. Controlled degradation was achieved through direct combination of alginate-lyase and alginate at 4 °C. Results showed that microbead degradation and cell release depended on the alginate-lyase to alginate ratio. Viability of released cells ranged from 87% on day 2 to 71% on day 12. Monolayer cultures of released ASCs grown in osteogenic medium produced higher levels of osteocalcin and similar levels of other soluble factors as ASCs that were neither previously encapsulated nor exposed to alginate-lyase. Bmp2, Fgf2, and Vegfa mRNA in released cells were also increased. Thus, this delivery system allows for controlled release of viable cells and can modulate their downstream osteogenic factor production.
Collapse
|
22
|
Carrancio S, Romo C, Ramos T, Lopez-Holgado N, Muntion S, Prins HJ, Martens AC, Briñón JG, San Miguel JF, Del Cañizo MC, Sanchez-Guijo F. Effects of MSC Coadministration and Route of Delivery on Cord Blood Hematopoietic Stem Cell Engraftment. Cell Transplant 2013; 22:1171-83. [DOI: 10.3727/096368912x657431] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) using umbilical cord blood (UCB) progenitors is increasingly being used. One of the problems that may arise after UCB transplantation is an impaired engraftment. Either intrabone (IB) injection of hematopoietic progenitors or mesenchymal stem cell (MSC) coadministration has been proposed among the strategies to improve engraftment. In the current study, we have assessed the effects of both approaches. Thus, NOD/SCID recipients were transplanted with human UCB CD34+ cells administered either intravenously (IV) or IB, receiving or not bone marrow (BM)-derived MSCs also IV or IB (in the right femur). Human HSC engraftment was measured 3 and 6 weeks after transplantation. Injected MSCs were tracked weekly by bioluminescence. Also, lodgment within the BM niche was assessed at the latter time point by immunofluorescence. Our study shows regarding HSC engraftment that the number of BM human CD45+ cells detected 3 weeks after transplantation was significantly higher in mice cotransplanted with human MSCs. Moreover, these mice had a higher myeloid (CD13+) engraftment and a faster B-cell (CD19+) chimerism. At the late time point evaluated (6 weeks), human engraftment was higher in the group in which both strategies were employed (IB injection of HSC and MSC coadministration). When assessing human MSC administration route, we were able to track MSCs only in the injected femurs, whereas they lost their signal in the contralateral bones. These human MSCs were mainly located around blood vessels in the subendosteal region. In summary, our study shows that MSC coadministration can enhance HSC engraftment in our xenogenic transplantation model, as well as IB administration of the CD34+ cells does. The combination of both strategies seems to be synergistic. Interestingly, MSCs were detected only where they were IB injected contributing to the vascular niche.
Collapse
Affiliation(s)
- S. Carrancio
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Salamanca, Spain
- Centro de Investigación del Cáncer-IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain
| | - C. Romo
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Salamanca, Spain
- Centro de Investigación del Cáncer-IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain
| | - T. Ramos
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Salamanca, Spain
| | - N. Lopez-Holgado
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Salamanca, Spain
| | - S. Muntion
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Salamanca, Spain
| | - H. J. Prins
- Department of Immunology and Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A. C. Martens
- Department of Immunology and Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J. G. Briñón
- Departamento de Biologia Celular y Patologia, Universidad de Salamanca, Salamanca, Spain
| | - J. F. San Miguel
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Salamanca, Spain
- Centro de Investigación del Cáncer-IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain
| | - M. C. Del Cañizo
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Salamanca, Spain
- Centro de Investigación del Cáncer-IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain
| | - F. Sanchez-Guijo
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Salamanca, Spain
- Centro de Investigación del Cáncer-IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain
| |
Collapse
|
23
|
Recent advancements in tissue engineering for stem cell-based cardiac therapies. Ther Deliv 2013; 4:503-16. [PMID: 23557290 DOI: 10.4155/tde.13.13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Advances in cardiac tissue engineering have recently focused on utilizing stem cells to regenerate infarcted and scarred myocardium. Due to their proliferative nature and tremendous potential for differentiation, stem cells are presently being investigated for clinical applications. Unfortunately, limiting factors such as massive cell death and poor retention have hampered clinical outcomes. Consequently, the development of an efficient delivery system for stem cells to the target site is essential. The use of innovative tissue engineering techniques has opened up new horizons within the field of cellular cardiomyoplasty. This paper will present a comprehensive overview of the recent advancements in stem cell technology destined for myocardial tissue repair. In addition, the multidisciplinary approach to tissue engineering presented here will provide the reader with insight into the clinical realization of cellular cardiomyoplasty.
Collapse
|
24
|
Wilson JL, McDevitt TC. Stem cell microencapsulation for phenotypic control, bioprocessing, and transplantation. Biotechnol Bioeng 2013; 110:667-82. [PMID: 23239279 DOI: 10.1002/bit.24802] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/28/2012] [Accepted: 11/30/2012] [Indexed: 01/18/2023]
Abstract
Cell microencapsulation has been utilized for decades as a means to shield cells from the external environment while simultaneously permitting transport of oxygen, nutrients, and secretory molecules. In designing cell therapies, donor primary cells are often difficult to obtain and expand to appropriate numbers, rendering stem cells an attractive alternative due to their capacities for self-renewal, differentiation, and trophic factor secretion. Microencapsulation of stem cells offers several benefits, namely the creation of a defined microenvironment which can be designed to modulate stem cell phenotype, protection from hydrodynamic forces and prevention of agglomeration during expansion in suspension bioreactors, and a means to transplant cells behind a semi-permeable barrier, allowing for molecular secretion while avoiding immune reaction. This review will provide an overview of relevant microencapsulation processes and characterization in the context of maintaining stem cell potency, directing differentiation, investigating scalable production methods, and transplanting stem cells for clinically relevant disorders.
Collapse
Affiliation(s)
- Jenna L Wilson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332-0535, USA
| | | |
Collapse
|
25
|
Microencapsulated chitosan–dextran sulfate nanoparticles for controled delivery of bioactive molecules and cells in bone regeneration. POLYMER 2013. [DOI: 10.1016/j.polymer.2012.10.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Proksch S, Steinberg T, Schulz S, Sauerbier S, Hellwig E, Tomakidi P. Environmental Biomechanics Substantiated by Defined Pillar Micropatterns Govern Behavior of Human Mesenchymal Stem Cells. Cell Transplant 2012; 21:2455-69. [DOI: 10.3727/096368912x637037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
While evidence on the impact of the biomechanical environment elasticity on human mesenchymal stem cell (hMSC) behavior is growing, the aspect of micropatterning is still poorly understood. Thus, the present study aimed at investigating the influence of defined environmental micropatterning on hMSC behavior. Following characterization, hMSCs were grown on defined pillar micropatterns of 5, 7, 9, and 11 μm. With respect to cell behavior, primary hMSC adhesion was detected by indirect immunofluorescence (iIF) for paxillin, vinculin, integrin αV, and actin, while proliferation was visualized by histone H3. Morphogenesis was monitored by scanning electron microscopy and the expression of stem cell-specific biomarkers by real-time PCR. Favoritism of primary adhesion of hMSCs on pillar tops occurred at smaller pillar micropatterns, concomitant with cell flattening. While vinculin, integrin αV, and paxillin appeared initially more cytoplasmic, high pillar micropatterns favored a progressive redistribution with polarization to cell tension sites and at cell borders. Accomplishment of morphogenesis at day 3 revealed establishment of fully rotund cell somata at 5 μm, while hMSCs appeared progressively elongated at rising micropatterns. The hMSC proliferation capacity was influenced by pillar micropatterns and gene expression analysis of stem cell- and differentiation-associated biomarkers disclosed clear modulation by distinct pillar micropatterns. In response to environmental biomechanics, our results show that hMSC behavior is governed by pillar micropatterning. In turn, these findings may form the basis to prospectively direct lineage specificity of hMSCs in a customized fashion.
Collapse
Affiliation(s)
- S. Proksch
- Department of Operative Dentistry and Periodontology, Dental School and Hospital, University Freiburg Medical Center, Freiburg, Germany
| | - T. Steinberg
- Department of Oral Biotechnology, Dental School and Hospital, University Freiburg Medical Center, Freiburg, Germany
| | - S. Schulz
- Department of Oral Biotechnology, Dental School and Hospital, University Freiburg Medical Center, Freiburg, Germany
| | - S. Sauerbier
- Department of Oral and Maxillofacial Surgery, Dental School and Hospital, University Freiburg Medical Center, Freiburg, Germany
| | - E. Hellwig
- Department of Operative Dentistry and Periodontology, Dental School and Hospital, University Freiburg Medical Center, Freiburg, Germany
| | - P. Tomakidi
- Department of Oral Biotechnology, Dental School and Hospital, University Freiburg Medical Center, Freiburg, Germany
| |
Collapse
|
27
|
Yao R, Zhang R, Lin F, Luan J. Injectable cell/hydrogel microspheres induce the formation of fat lobule-like microtissues and vascularized adipose tissue regeneration. Biofabrication 2012; 4:045003. [PMID: 23075755 DOI: 10.1088/1758-5082/4/4/045003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this paper, we demonstrated that collagen/alginate microspheres could be generated by a non-contact microfabrication device and serve as excellent cell embedding and delivery devices as they were porous, injectable and able to provide growth- and differentiation-supporting matrix for human adipose-derived stem cells (hASCs). The microsphere matrix demonstrated highly porous structure and mechanical stability for as long as 90 days. hASCs demonstrated high viability after microsphere formation as well as higher proliferation and more mature adipocytes induction compared to two-dimensional culture. After four weeks culture in adipogenic differentiation medium, adipocytes/collagen/alginate microspheres highly mimicking natural fat lobules were obtained and injected subcutaneously into the head of node mice. The in vivo study demonstrated vascularized adipose tissue formation in four weeks. The regenerated vasculature among the transplantation showed functional anastomosis with host vasculature, suggesting that these cell/hydrogel microspheres present injectable adipocytes delivery devices capable of generating vascularized adipose tissue in vivo and thus suitable for cell transplantation and tissue regeneration.
Collapse
Affiliation(s)
- Rui Yao
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.
| | | | | | | |
Collapse
|
28
|
Wallrapp C, Thoenes E, Thürmer F, Jork A, Kassem M, Geigle P. Cell-based delivery of glucagon-like peptide-1 using encapsulated mesenchymal stem cells. J Microencapsul 2012; 30:315-24. [DOI: 10.3109/02652048.2012.726281] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Ceccaldi C, Fullana SG, Alfarano C, Lairez O, Calise D, Cussac D, Parini A, Sallerin B. Alginate scaffolds for mesenchymal stem cell cardiac therapy: influence of alginate composition. Cell Transplant 2012; 21:1969-84. [PMID: 22776769 DOI: 10.3727/096368912x647252] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Despite the success of alginate scaffolds and mesenchymal stem cells (MSCs) therapy in cardiac failure treatment, the impact of the physicochemical environment provided by alginate matrices on cell behavior has never been investigated. The purpose of this work was double: to determine the alginate composition influence on (1) encapsulated rat MSC viability, paracrine activity, and phenotype in vitro and (2) cardiac implantability and in vivo biocompatibility of patch shape scaffolds. Two alginates, differing in composition and thus presenting different mechanical properties when hydrogels, were characterized. In both cases, encapsulated MSC viability was maintained at around 75%, and their secretion characteristics were retained 28 days postencapsulation. In vivo study revealed a high cardiac compatibility of the tested alginates: cardiac parameters were maintained, and rats did not present any sign of infection. Moreover, explanted hydrogels appeared surrounded by a vascularized tissue. However, scaffold implantability was highly dependent on alginate composition. G-type alginate patches, presenting higher elastic and Young moduli than M-type alginate patches, showed a better implantation easiness and were the only ones that maintained their shape and morphology in vivo. As a consequence of alginate chemical composition and resulting hydrogel structuration, G-type alginate hydrogels appear to be more adapted for cardiac implantation.
Collapse
Affiliation(s)
- Caroline Ceccaldi
- Université de Toulouse, CIRIMAT, UPS-INPT-CNRS, Faculté de Pharmacie, Toulouse, France.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The immobilization of cells into polymeric scaffolds releasing therapeutic factors, such as alginate microcapsules, has been widely employed as a drug-delivery system for numerous diseases for many years. As a result of the potential benefits stem cells offer, during recent decades, this type of cell has gained the attention of the scientific community in the field of cell microencapsulation technology and has opened many perspectives. Stem cells represent an ideal tool for cell immobilization and so does alginate as a biomaterial of choice in the elaboration of these biomimetic scaffolds, offering us the possibility of benefiting from both disciplines in a synergistic way. This review intends to give an overview of the many possibilities and the current situation of immobilized stem cells in alginate bioscaffolds, showing the diverse therapeutic applications they can already be employed in; not only drug-delivery systems, but also tissue engineering platforms.
Collapse
|
31
|
Houtgraaf JH, de Jong R, Monkhorst K, Tempel D, van de Kamp E, den Dekker WK, Kazemi K, Hoefer I, Pasterkamp G, Lewis AL, Stratford PW, Wallrapp C, Zijlstra F, Duckers HJ. Feasibility of intracoronary GLP-1 eluting CellBead™ infusion in acute myocardial infarction. Cell Transplant 2012; 22:535-43. [PMID: 22507673 DOI: 10.3727/096368912x638973] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cell therapy is a field of growing interest in the prevention of post acute myocardial infarction (AMI) heart failure. Stem cell retention upon local delivery to the heart, however, is still unsatisfactory. CellBeads were recently developed as a potential solution to this problem. CellBeads are 170-μm alginate microspheres that contain mesenchymal stem cells (MSCs) genetically modified to express glucagon-like peptide-1 (GLP-1) supplementary to inherent paracrine factors. GLP-1 is an incretin hormone that has both antiapoptotic and cardioprotective effects. Transplanting CellBeads in the post-AMI heart might induce cardiomyocyte salvage and ultimately abrogate adverse cardiac remodeling. We aimed to investigate the feasibility of intracoronary infusion of CellBeads in a large animal model of AMI. Four pigs were used in a pilot study to assess the maximal safe dose of CellBeads. In the remaining 21 animals, an AMI was induced by balloon occlusion of the left circumflex coronary artery for 90 min. During reperfusion, 60,000 CellBeads (n = 11), control beads (n = 4), or lactated Ringers' (n = 6) were infused. Animals were sacrificed after 2 or 7 days, and the hearts were excised for histological analyses. Intracoronary infusion did not permanently affect coronary flow in any of the groups. Histological analysis revealed CellBeads containing viable MSCs up to 7 days. Viability and activity of the MSCs was confirmed by qPCR analysis that showed expression of recombinant GLP-1 and human genes after 2 and 7 days. CellBeads reduced inflammatory infiltration by 29% (p = 0.001). In addition, they decreased the extent of apoptosis by 25% (p = 0.001) after 2 days. We show that intracoronary infusion of 5 million encapsulated MSCs is safe and feasible. Also, several parameters indicate that the cells have paracrine effects, suggesting a potential therapeutic benefit of this new approach.
Collapse
Affiliation(s)
- Jaco H Houtgraaf
- Molecular Cardiology Laboratory, Thoraxcenter, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lee RJ, Hinson A, Helgerson S, Bauernschmitt R, Sabbah HN. Polymer-based restoration of left ventricular mechanics. Cell Transplant 2012; 22:529-33. [PMID: 22469060 DOI: 10.3727/096368911x637461] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Heart failure continues to be a major health care concern with relatively few options for severely advanced heart failure patients. The hallmark of heart failure is the progressive dilatation of the left ventricle, thinning of the left ventricular wall leading to increased wall stress and increased myocardial oxygen consumption. Applying Laplace's law to the failing dilated ventricle, left ventricular augmentation utilizes a tissue engineering strategy to increase wall thickness and reduce chamber diameter, resulting in a decrease in wall stress and improved left ventricular function. A review of the rationale for an in situ tissue engineering approach for this treatment of heart failure and early clinical results of the Algisyl-LVR™ program are presented.
Collapse
Affiliation(s)
- Randall J Lee
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, CA, USA.
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Santa-Maria M, Scher H, Jeoh T. Microencapsulation of bioactives in cross-linked alginate matrices by spray drying. J Microencapsul 2012; 29:286-95. [DOI: 10.3109/02652048.2011.651494] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Zhang W, He X. Microencapsulating and Banking Living Cells for Cell-Based Medicine. JOURNAL OF HEALTHCARE ENGINEERING 2011; 2:427-446. [PMID: 22180835 DOI: 10.1260/2040-2295.2.4.427] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A major challenge to the eventual success of the emerging cell-based medicine such as tissue engineering, regenerative medicine, and cell transplantation is the limited availability of the desired cell sources. This challenge can be addressed by cell microencapsulation to overcome the undesired immune response (i.e., to achieve immunoisolation) so that non-autologous cells can be used to treat human diseases, and by cell/tissue preservation to bank living cells for wide distribution to end users so that they are readily available when needed in the future. This review summarizes the status quo of research in both cell microencapsulation and banking the microencapsulated cells. It is concluded with a brief outlook of future research directions in this important field.
Collapse
Affiliation(s)
- Wujie Zhang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210
| | | |
Collapse
|
36
|
Montanucci P, Pennoni I, Pescara T, Blasi P, Bistoni G, Basta G, Calafiore R. The functional performance of microencapsulated human pancreatic islet-derived precursor cells. Biomaterials 2011; 32:9254-62. [DOI: 10.1016/j.biomaterials.2011.08.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 08/16/2011] [Indexed: 11/16/2022]
|
37
|
Barminko J, Kim JH, Otsuka S, Gray A, Schloss R, Grumet M, Yarmush ML. Encapsulated mesenchymal stromal cells for in vivo transplantation. Biotechnol Bioeng 2011; 108:2747-58. [PMID: 21656712 PMCID: PMC3178737 DOI: 10.1002/bit.23233] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 12/13/2022]
Abstract
Immunomodulatory human mesenchymal stromal cells (hMSC) have been incorporated into therapeutic protocols to treat secondary inflammatory responses post-spinal cord injury (SCI) in animal models. However, limitations with direct hMSC implantation approaches may prevent effective translation for therapeutic development of hMSC infusion into post-SCI treatment protocols. To circumvent these limitations, we investigated the efficacy of alginate microencapsulation in developing an implantable vehicle for hMSC delivery. Viability and secretory function were maintained within the encapsulated hMSC population, and hMSC secreted anti-inflammatory cytokines upon induction with the pro-inflammatory factors, TNF-α and IFN-γ. Furthermore, encapsulated hMSC modulated inflammatory macrophage function both in vitro and in vivo, even in the absence of direct hMSC-macrophage cell contact and promoted the alternative M2 macrophage phenotype. In vitro, this was evident by a reduction in macrophage iNOS expression with a concomitant increase in CD206, a marker for M2 macrophages. Finally, Sprague-Dawley rat spinal cords were injured at vertebra T10 via a weight drop model (NYU model) and encapsulated hMSC were administered via lumbar puncture 24 h post-injury. Encapsulated hMSC localized primarily in the cauda equina of the spinal cord. Histological assessment of spinal cord tissue 7 days post-SCI indicated that as few as 5 × 10(4) encapsulated hMSC yielded increased numbers of CD206-expressing macrophages, consistent with our in vitro studies. The combined findings support the inclusion of immobilized hMSC in post-CNS trauma tissue protective therapy, and suggest that conversion of macrophages to the M2 subset is responsible, at least in part, for tissue protection.
Collapse
Affiliation(s)
| | - Jae Hwan Kim
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Seiji Otsuka
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Andrea Gray
- Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Rene Schloss
- Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Martin Grumet
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, USA
| | | |
Collapse
|
38
|
Carrancio S, Blanco B, Romo C, Muntion S, Lopez-Holgado N, Blanco JF, Briñon JG, San Miguel JF, Sanchez-Guijo FM, del Cañizo MC. Bone marrow mesenchymal stem cells for improving hematopoietic function: an in vitro and in vivo model. Part 2: Effect on bone marrow microenvironment. PLoS One 2011; 6:e26241. [PMID: 22028841 PMCID: PMC3197625 DOI: 10.1371/journal.pone.0026241] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/22/2011] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to determine how mesenchymal stem cells (MSC) could improve bone marrow (BM) stroma function after damage, both in vitro and in vivo. Human MSC from 20 healthy donors were isolated and expanded. Mobilized selected CD34+ progenitor cells were obtained from 20 HSCT donors. For in vitro study, long-term bone marrow cultures (LTBMC) were performed using a etoposide damaged stromal model to test MSC effect in stromal confluence, capability of MSC to lodge in stromal layer as well as some molecules (SDF1, osteopontin,) involved in hematopoietic niche maintenance were analyzed. For the in vivo model, 64 NOD/SCID recipients were transplanted with CD34+ cells administered either by intravenous (IV) or intrabone (IB) route, with or without BM derived MSC. MSC lodgement within the BM niche was assessed by FISH analysis and the expression of SDF1 and osteopontin by immunohistochemistry. In vivo study showed that when the stromal damage was severe, TP-MSC could lodge in the etoposide-treated BM stroma, as shown by FISH analysis. Osteopontin and SDF1 were differently expressed in damaged stroma and their expression restored after TP-MSC addition. Human in vivo MSC lodgement was observed within BM niche by FISH, but MSC only were detected and not in the contralateral femurs. Human MSC were located around blood vessels in the subendoestal region of femurs and expressed SDF1 and osteopontin. In summary, our data show that MSC can restore BM stromal function and also engraft when a higher stromal damage was done. Interestingly, MSC were detected locally where they were administered but not in the contralateral femur.
Collapse
Affiliation(s)
- Soraya Carrancio
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
- Centro de Investigación del Cáncer-IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain
| | - Belen Blanco
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
- Centro de Investigación del Cáncer-IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain
| | - Carlos Romo
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
- Centro de Investigación del Cáncer-IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain
| | - Sandra Muntion
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
| | - Natalia Lopez-Holgado
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
| | - Juan F. Blanco
- Servicio de Traumatología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Jesus G. Briñon
- Departamento de Biologia Celular y Patologia, Universidad de Salamanca, Spain
| | - Jesus F. San Miguel
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
- Centro de Investigación del Cáncer-IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain
| | - Fermin M. Sanchez-Guijo
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
| | - M. Consuelo del Cañizo
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
- Centro de Investigación del Cáncer-IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain
- * E-mail:
| |
Collapse
|