1
|
Terai S, Tsuchiya A, Watanabe Y, Takeuchi S. Transition of clinical and basic studies on liver cirrhosis treatment using cells to seek the best treatment. Inflamm Regen 2021; 41:27. [PMID: 34530931 PMCID: PMC8444392 DOI: 10.1186/s41232-021-00178-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023] Open
Abstract
The liver is a highly regenerative organ; however, its regeneration potential is reduced by chronic inflammation with fibrosis accumulation, leading to cirrhosis. With an aim to tackle liver cirrhosis, a life-threatening disease, trials of autologous bone marrow cell infusion (ABMi) therapy started in 2003. Clinical studies revealed that ABMi attenuated liver fibrosis and improved liver function in some patients; however, this therapy has some limitations such as the need of general anesthesia. Following ABMi therapy, studies have focused on specific cells such as mesenchymal stromal cells (MSCs) from a variety of tissues such as bone marrow, adipose tissue, and umbilical cord tissues. Particularly, studies have focused on gaining mechanistic insights into MSC distribution and effects on immune cells, especially macrophages. Several basic studies have reported the use of MSCs for liver cirrhosis models, while a number of clinical studies have used autologous and allogeneic MSCs; however, there are only a few reports on the obvious substantial effect of MSCs in clinical studies. Since then, studies have analyzed and identified the important signals or components in MSCs that regulate immune cells, such as macrophages, under cirrhotic conditions and have revealed that MSC-derived exosomes are key regulators. Researchers are still seeking the best approach and filling the gap between basic and clinical studies to treat liver cirrhosis. This paper highlights the timeline of basic and clinical studies analyzing ABMi and MSC therapies for cirrhosis and the scope for future studies and therapy.
Collapse
Affiliation(s)
- Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Yusuke Watanabe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Suguru Takeuchi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| |
Collapse
|
2
|
Yukawa H, Fujiwara M, Kobayashi K, Kumon Y, Miyaji K, Nishimura Y, Oshimi K, Umehara Y, Teki Y, Iwasaki T, Hatano M, Hashimoto H, Baba Y. A quantum thermometric sensing and analysis system using fluorescent nanodiamonds for the evaluation of living stem cell functions according to intracellular temperature. NANOSCALE ADVANCES 2020; 2:1859-1868. [PMID: 36132503 PMCID: PMC9419001 DOI: 10.1039/d0na00146e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/30/2020] [Indexed: 05/13/2023]
Abstract
Intracellular thermometry techniques play an important role in elucidating the relationship between the intracellular temperature and stem cell functions. However, there have been few reports on thermometry techniques that can detect the intracellular temperature of cells during several days of incubation. In this study, we developed a novel quantum thermometric sensing and analysis system (QTAS) using fluorescent nanodiamonds (FNDs). FNDs could label adipose tissue-derived stem cells (ASCs) at high efficiency with 24 h of incubation, and no cytotoxicity was observed in ASCs labeled with less than 500 μg mL-1 of FNDs. The peak of FNDs was confirmed at approximately 2.87 GHz with the characteristic fluorescence spectra of NV centers that could be optically detected (optically detected magnetic resonance [ODMR]). The ODMR peak clearly shifted to the high-frequency side as the temperature decreased and gave a mean temperature dependence of -(77.6 ± 11.0) kHz °C-1, thus the intracellular temperature of living ASCs during several days of culturing could be precisely measured using the QTAS. Moreover, the intracellular temperature was found to influence the production of growth factors and the degree of differentiation into adipocytes and osteocytes. These data suggest that the QTAS can be used to investigate the relationship between intracellular temperature and cellular functions.
Collapse
Affiliation(s)
- Hiroshi Yukawa
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University Nagoya Japan
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya Japan
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology Chiba Japan
| | - Masazumi Fujiwara
- Department of Chemistry, Graduate School of Science, Osaka City University Osaka Japan
| | - Kaori Kobayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya Japan
| | - Yuka Kumon
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya Japan
| | - Kazu Miyaji
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya Japan
| | - Yushi Nishimura
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology Chiba Japan
- Department of Chemistry, Graduate School of Science, Osaka City University Osaka Japan
| | - Keisuke Oshimi
- Department of Chemistry, Graduate School of Science, Osaka City University Osaka Japan
| | - Yumi Umehara
- Department of Chemistry, Graduate School of Science, Osaka City University Osaka Japan
| | - Yoshio Teki
- Department of Chemistry, Graduate School of Science, Osaka City University Osaka Japan
| | - Takayuki Iwasaki
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Tokyo Institute of Technology Tokyo Japan
| | - Mutsuko Hatano
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Tokyo Institute of Technology Tokyo Japan
| | - Hideki Hashimoto
- School of Science and Technology, Kwansei Gakuin University Hyogo Japan
| | - Yoshinobu Baba
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University Nagoya Japan
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya Japan
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology Chiba Japan
| |
Collapse
|
3
|
Yu SJ, Yoon JH, Kim W, Lee JM, Lee YB, Cho Y, Lee DH, Lee M, Yoo JJ, Cho EJ, Lee JH, Kim YJ, Kim CY. Ultrasound-guided percutaneous portal transplantation of peripheral blood monocytes in patients with liver cirrhosis. Korean J Intern Med 2017; 32:261-268. [PMID: 27044856 PMCID: PMC5339463 DOI: 10.3904/kjim.2015.267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/02/2015] [Accepted: 09/06/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIMS Liver transplantation offers the only definite cure for cirrhosis but lacking donors is problem. Stem cell therapy is attractive in this setting. In this study, we aimed to explore the safety and efficacy of ultrasound-guided percutaneous portal transplantation of peripheral blood monocyte cell (PBMC) in cirrhotic patients. METHODS A total of nine decompensated cirrhotic patients were randomized into three groups: group 1 (n = 3) was control group, group 2 (n = 3) received granulocyte-colony stimulating factor (G-CSF) mobilization for 3 days, and group 3 (n = 3) received G-CSF mobilized PBMCs by leukapheresis and PBMC transplantation through ultrasound-guided percutaneous portal vein puncture. Liver function and clinical features were evaluated. RESULTS At baseline, the Child-Turcotte-Pugh and the model for end-stage liver disease scores were comparable in study groups. Compared with group 1, there was a tendency to improve liver function in group 3 at 6 months after treatment. Treatment was tolerable and no complications were encountered related to the G-CSF mobilization or percutaneous portal administration of PBMCs. Imaging studies showed patent portal veins at the end of the study period. CONCLUSIONS Autologous PBMC transplantation through ultrasound-guided percutaneous portal vein puncture could be considered as a safe alternative treatment for decompensated cirrhotic patients.
Collapse
Affiliation(s)
- Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Hwan Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Correspondence to Jung-Hwan Yoon, M.D. Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea Tel: +82-2-2072-2228 Fax: +82-2-743-6701 E-mail:
| | - Won Kim
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology and Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yun Bin Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yuri Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Hyeon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Minjong Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong-Ju Yoo
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yoon Jun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Chung Yong Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Pejchal J, Šinkorová Z, Tichý A, Kmochová A, Ďurišová K, Kubelková K, Pohanka M, Bureš J, Tachecí I, Kuča K, Vávrová J. Attenuation of radiation-induced gastrointestinal damage by epidermal growth factor and bone marrow transplantation in mice. Int J Radiat Biol 2015; 91:703-14. [PMID: 25994811 DOI: 10.3109/09553002.2015.1054528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE We examined the effect of epidermal growth factor (EGF) and bone marrow transplantation (BMT) on gastrointestinal damage after high-dose irradiation of mice. MATERIAL AND METHODS C57Black/6 mice were used. Two survival experiments were performed (12 and 13 Gy; (60)Co, 0.59-0.57 Gy/min). To evaluate BMT and EGF action, five groups were established - 0 Gy, 13 Gy, 13 Gy + EGF (at 2 mg/kg, first dose 24 h after irradiation and then every 48 h), 13 Gy + BMT (5 × 10(6) cells from green fluorescent protein [GFP] syngenic mice, 4 h after irradiation), and 13 Gy + BMT + EGF. Survival data, blood cell counts, gastrointestine and liver parameters and GFP positive cell migration were measured. RESULTS BMT and EGF (three doses, at 2 mg/kg, administered 1, 3 and 5 days after irradiation) significantly increased survival (13 Gy). In blood, progressive cytopenia was observed with BMT, EGF or their combination having no improving effect early after irradiation. In gastrointestinal system, BMT, EGF and their combination attenuated radiation-induced atrophy and increased regeneration during first week after irradiation with the combination being most effective. Signs of systemic inflammatory reaction were observed 30 days after irradiation. CONCLUSIONS Our data indicate that BMT together with EGF is a promising strategy in the treatment of high-dose whole-body irradiation damage.
Collapse
Affiliation(s)
- Jaroslav Pejchal
- a Department of Radiobiology , Faculty of Military Health Sciences, University of Defence , Trebesska, Hradec Kralove , Czech Republic
| | - Zuzana Šinkorová
- a Department of Radiobiology , Faculty of Military Health Sciences, University of Defence , Trebesska, Hradec Kralove , Czech Republic
| | - Aleš Tichý
- a Department of Radiobiology , Faculty of Military Health Sciences, University of Defence , Trebesska, Hradec Kralove , Czech Republic
| | - Adéla Kmochová
- a Department of Radiobiology , Faculty of Military Health Sciences, University of Defence , Trebesska, Hradec Kralove , Czech Republic
| | - Kamila Ďurišová
- a Department of Radiobiology , Faculty of Military Health Sciences, University of Defence , Trebesska, Hradec Kralove , Czech Republic
| | - Klára Kubelková
- b Department of Molecular Pathology and Biology , Faculty of Military Health Sciences, University of Defence , Trebesska, Hradec Kralove , Czech Republic
| | - Miroslav Pohanka
- b Department of Molecular Pathology and Biology , Faculty of Military Health Sciences, University of Defence , Trebesska, Hradec Kralove , Czech Republic
| | - Jan Bureš
- c 2nd Department of Internal Medicine - Gastroenterology , Faculty of Medicine in Hradec Kralove, Charles University in Prague , Simkova, Hradec Kralove , Czech Republic
| | - Ilja Tachecí
- c 2nd Department of Internal Medicine - Gastroenterology , Faculty of Medicine in Hradec Kralove, Charles University in Prague , Simkova, Hradec Kralove , Czech Republic
| | - Kamil Kuča
- d Biomedical Reseach Centre, University Hospital , Sokolska, Hradec Kralove , Czech Republic
| | - Jiřina Vávrová
- a Department of Radiobiology , Faculty of Military Health Sciences, University of Defence , Trebesska, Hradec Kralove , Czech Republic
| |
Collapse
|
5
|
El-Akabawy G, El-Mehi A. Mobilization of endogenous bone marrow-derived stem cells in a thioacetamide-induced mouse model of liver fibrosis. Tissue Cell 2015; 47:257-65. [PMID: 25857836 DOI: 10.1016/j.tice.2015.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/01/2015] [Accepted: 03/03/2015] [Indexed: 02/07/2023]
Abstract
The clinical significance of enhancing endogenous circulating haematopoietic stem cells is becoming increasingly recognized, and the augmentation of circulating stem cells using granulocyte-colony stimulating factor (G-CSF) has led to promising preclinical and clinical results for several liver fibrotic conditions. However, this approach is largely limited by cost and the infeasibility of maintaining long-term administration. Preclinical studies have reported that StemEnhance, a mild haematopoietic stem cell mobilizer, promotes cardiac muscle regeneration and remedies the manifestation of diabetes. However, the effectiveness of StemEnhance in ameliorating liver cirrhosis has not been studied. This study is the first to evaluate the beneficial effect of StemEnhance administration in a thioacetamide-induced mouse model of liver fibrosis. StemEnhance augmented the number of peripheral CD34-positive cells, reduced hepatic fibrosis, improved histopathological changes, and induced endogenous liver proliferation. In addition, VEGF expression was up-regulated, while TNF-α expression was down-regulated in thioacetamide-induced fibrotic livers after StemEnhance intake. These data suggest that StemEnhance may be useful as a potential therapeutic candidate for liver fibrosis by inducing reparative effects via mobilization of haematopoietic stem cells.
Collapse
Affiliation(s)
- Gehan El-Akabawy
- Menoufia University, Department of Anatomy and Embryology, Faculty of Medicine, Egypt.
| | - Abeer El-Mehi
- Menoufia University, Department of Anatomy and Embryology, Faculty of Medicine, Egypt
| |
Collapse
|
6
|
Behbahan IS, Keating A, Gale RP. Concise review: bone marrow autotransplants for liver disease? Stem Cells 2014; 31:2313-29. [PMID: 23939914 DOI: 10.1002/stem.1510] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/08/2013] [Accepted: 07/15/2013] [Indexed: 12/11/2022]
Abstract
There are increasing reports of using bone marrow-derived stem cells to treat advanced liver disease. We consider several critical issues that underlie this approach. For example, are there multipotent stem cell populations in human adult bone marrow? Can they develop into liver cells or supporting cell types? What are stromal stem/progenitor cells, and can they promote tissue repair without replacing hepatocytes? Does reversal of end-stage liver disease require new hepatocytes, a new liver microenvironment, both, neither or something else? Although many of these questions are unanswered, we consider the conceptual and experimental bases underlying these issues and critically analyze results of clinical trials of stem cell therapy of end-stage liver disease.
Collapse
Affiliation(s)
- Iman Saramipoor Behbahan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | | | | |
Collapse
|
7
|
Margini C, Vukotic R, Brodosi L, Bernardi M, Andreone P. Bone marrow derived stem cells for the treatment of end-stage liver disease. World J Gastroenterol 2014; 20:9098-9105. [PMID: 25083082 PMCID: PMC4112892 DOI: 10.3748/wjg.v20.i27.9098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/27/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
End-stage disease due to liver cirrhosis is an important cause of death worldwide. Cirrhosis results from progressive, extensive fibrosis and impaired hepatocyte regeneration. The only curative treatment is liver transplantation, but due to the several limitations of this procedure, the interest in alternative therapeutic strategies is increasing. In particular, the potential of bone marrow stem cell (BMSC) therapy in cirrhosis has been explored in different trials. In this article, we evaluate the results of 18 prospective clinical trials, and we provide a descriptive overview of recent advances in the research on hepatic regenerative medicine. The main message from the currently available data in the literature is that BMSC therapy is extremely promising in the context of liver cirrhosis. However, its application should be further explored in randomized, controlled trials with large cohorts and long follow-ups.
Collapse
|
8
|
Abstract
Liver disease is a rising cause of mortality and morbidity, and treatment options remain limited. Liver transplantation is curative but limited by donor organ availability, operative risk and long-term complications. The contribution of bone marrow (BM)-derived stem cells to tissue regeneration has been recognised and there is considerable interest in the potential benefits of BM stem cells in patients with liver disease. In chronic liver disease, deposition of fibrous scar tissue inhibits hepatocyte proliferation and leads to portal hypertension. Although initial reports had suggested transdifferentiation of stem cells into hepatocytes, the beneficial effects of BM stem cells are more likely derived from the ability to breakdown scar tissue and stimulate hepatocyte proliferation. Studies in animal models have yielded promising results, although the exact mechanisms and cell type responsible have yet to be determined. Small-scale clinical studies have quickly followed and, although primarily designed to examine safety and feasibility of this approach, have reported improvements in liver function in treated patients. Well-designed, controlled studies are required to fully determine the benefits of BM stem cell therapy.
Collapse
Affiliation(s)
- Andrew King
- NIHR Liver Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
9
|
Terai S, Takami T, Yamamoto N, Fujisawa K, Ishikawa T, Urata Y, Tanimoto H, Iwamoto T, Mizunaga Y, Matsuda T, Oono T, Marumoto M, Burganova G, Fernando Quintanilha L, Hidaka I, Marumoto Y, Saeki I, Uchida K, Yamasaki T, Tani K, Taura Y, Fujii Y, Nishina H, Okita K, Sakaida I. Status and prospects of liver cirrhosis treatment by using bone marrow-derived cells and mesenchymal cells. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:206-10. [PMID: 24450831 DOI: 10.1089/ten.teb.2013.0527] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In 2003, we started autologous bone marrow cell infusion (ABMi) therapy for treating liver cirrhosis. ABMi therapy uses 400 mL of autologous bone marrow obtained under general anesthesia and infused mononuclear cells from the peripheral vein. The clinical study expanded and we treated liver cirrhosis induced by HCV and HBV infection and alcohol consumption. We found that the ABMi therapy was effective for cirrhosis patients and now we are treating patients with combined HIV and HCV infection and with metabolic syndrome-induced liver cirrhosis. Currently, to substantiate our findings that liver cirrhosis can be successfully treated by the ABMi therapy, we are conducting randomized multicenter clinical studies designated "Advanced medical technology B" for HCV-related liver cirrhosis in Japan. On the basis of our clinical study, we developed a proof-of-concept showing that infusion of bone marrow cells (BMCs) improved liver fibrosis and sequentially activated proliferation of hepatic progenitor cells and hepatocytes, further promoting restoration of liver functions. To treat patients with severe forms of liver cirrhosis, we continued translational research to develop less invasive therapies by using mesenchymal stem cells derived from bone marrow. We obtained a small quantity of BMCs under local anesthesia and expanded them into mesenchymal stem cells that will then be used for treating cirrhosis. In this review, we present our strategy to apply the results of our laboratory research to clinical studies.
Collapse
Affiliation(s)
- Shuji Terai
- 1 Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine , Yamaguchi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bringing back the help: autologous bone marrow infusion restores CD4+ T cells in AIDS patients with chronic liver disease. Cell Death Dis 2013; 4:e849. [PMID: 24113183 PMCID: PMC3824682 DOI: 10.1038/cddis.2013.373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Tanimoto H, Terai S, Taro T, Murata Y, Fujisawa K, Yamamoto N, Sakaida I. Improvement of liver fibrosis by infusion of cultured cells derived from human bone marrow. Cell Tissue Res 2013; 354:717-28. [PMID: 24104560 DOI: 10.1007/s00441-013-1727-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/29/2013] [Indexed: 01/12/2023]
Abstract
We develop "autologous bone marrow cell infusion (ABMi) therapy" for the treatment of human decompensated liver cirrhosis and confirm the efficacy and safety of this treatment in multicenter clinical studies. With the goal of further expanding the applications of ABMi, we first cultured human bone marrow cells and then determined whether a cell fraction found to be effective in improving liver fibrosis can be amplified. Cells harvested after two passages (P2 cells) consistently contained approximately 94% mesenchymal stem cells (MSCs); conversely, the cells harvested after only medium change (P0 cells) contained many macrophages. MSCs (2.8 × 10(8)) in P2 cells were harvested from 3.8 × 10(8) bone marrow-derived mononuclear cells after 22 days. DNA-chip analysis also showed during the culturing step that bone marrow-derived cells decreased with macrophage phenotype. The infused 5 × 10(5) P2 cells significantly improved liver fibrosis in the nonobese diabetic/severe combined immunodeficient (NOD-SCID) mouse carbon tetrachloride (CCl4) liver cirrhosis model and induced the expression of matrix metalloproteinase (MMP)-9 and suppressed expressions of alpha smooth muscle actin (αSMA), tumor necrosis factor alpha (TNFα) and transforming growth factor beta (TGFβ) in the liver. Cultured human bone marrow-derived cells (P2 cells) significantly inhibited liver fibrosis. The increase of MMP-9 and suppressed activation of hepatic stellate cells (HSCs) through the regulation of humoral factors (TNFα and TGFβ) contribute to the improvement of liver fibrosis by MSCs comprising about 94% of P2 cells. MSCs in cultured human bone marrow-derived mono-nuclear cells (BM-MNCs) proliferate sufficiently in cell therapy, so we believe our cultured bone marrow-derived cell therapy can lead to expanded clinical applications and enable outpatient therapy.
Collapse
Affiliation(s)
- Haruko Tanimoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Terai S, Tanimoto H, Maeda M, Zaitsu J, Hisanaga T, Iwamoto T, Fujisawa K, Mizunaga Y, Matsumoto T, Urata Y, Marumoto Y, Hidaka I, Ishikawa T, Yokoyama Y, Aoyama K, Tsuchiya M, Takami T, Omori K, Yamamoto N, Segawa M, Uchida K, Yamasaki T, Okita K, Sakaida I. Timeline for development of autologous bone marrow infusion (ABMi) therapy and perspective for future stem cell therapy. J Gastroenterol 2012; 47:491-7. [PMID: 22488349 DOI: 10.1007/s00535-012-0580-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/06/2012] [Indexed: 02/04/2023]
Abstract
Liver cirrhosis patients generally progress to liver failure. To cure this progressive disease, we developed a novel cell therapy using bone marrow cells; autologous bone marrow cell infusion (ABMi) therapy. We previously described the possible action mechanism of ABMi therapy in the cirrhotic liver, and showed the timeline and results of clinical studies of ABMi therapy. We have also carried out other clinical studies using bone marrow cells and granulocyte colony-stimulating factor. Here, we report a new randomized clinical trial to evaluate the effects of ABMi therapy. However, ABMi therapy may not be possible in patients who are unable to undergo general anesthesia; therefore, we have started to develop a next-generation stem cell therapy using cultured mesenchymal stem cells.
Collapse
Affiliation(s)
- Shuji Terai
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|