1
|
Takagi R, Takegaki J, Osana S, Kano Y, Konishi S, Fujita S. Cooling-promoted myogenic differentiation of murine bone marrow mesenchymal stem cells through TRPM8 activation in vitro. Physiol Rep 2023; 11:e15855. [PMID: 38086691 PMCID: PMC10716030 DOI: 10.14814/phy2.15855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 12/17/2023] Open
Abstract
TRPM8 agonist has been reported to promote osteogenic differentiation of mesenchymal stem cells (MSCs), therefore we evaluated whether cooling-induced activation of TRPM8 promotes myogenic differentiation of MSCs. We used 5-azacytidine as a myogenic differentiation inducer in murine bone marrow-derived MSCs. Addition of menthol, a TRPM8 agonist, to the differentiation induction medium significantly, increased the percentage of MyoD-positive cells, a specific marker of myogenic differentiation. We performed intracellular Ca2+ imaging experiments using fura-2 to confirm TRPM8 activation by cooling stimulation. The results confirmed that intracellular Ca2+ concentration ([Ca2+ ]i) increases due to TRPM8 activation, and TRPM8 antagonist inhibits increase in [Ca2+ ]i at medium temperatures below 19°C. We also examined the effect of cooling exposure time on myogenic differentiation of MSCs using an external cooling stimulus set at 17°C. The results showed that 60 min of cooling had an acceleratory effect on differentiation (2.18 ± 0.27 times). We observed that the TRPM8 antagonist counteracted the differentiation-promoting effect of the cooling. These results suggest that TRPM8 might modulate the multiple differentiation pathways of MSCs, and that cooling is an effective way of activating TRPM8, which regulates MSCs differentiation in vitro.
Collapse
Affiliation(s)
- Ryo Takagi
- Ritsumeikan Global Innovation Research OrganizationRitsumeikan UniversityShigaJapan
| | - Junya Takegaki
- Research Organization of Science and TechnologyRitsumeikan UniversityShigaJapan
| | - Shion Osana
- Graduate School of Informatics and EngineeringUniversity of Electro‐CommunicationsTokyoJapan
- Faculty of Physical Education, Department of Sport and Medical ScienceKokushikan UniversityTokyoJapan
| | - Yutaka Kano
- Graduate School of Informatics and EngineeringUniversity of Electro‐CommunicationsTokyoJapan
- Center for Neuroscience and Biomedical EngineeringUniversity of Electro‐CommunicationsTokyoJapan
| | - Satoshi Konishi
- Faculty of Science and EngineeringRitsumeikan UniversityShigaJapan
| | - Satoshi Fujita
- Faculty of Sport and Health ScienceRitsumeikan UniversityShigaJapan
| |
Collapse
|
2
|
Brzoska E, Kalkowski L, Kowalski K, Michalski P, Kowalczyk P, Mierzejewski B, Walczak P, Ciemerych MA, Janowski M. Muscular Contribution to Adolescent Idiopathic Scoliosis from the Perspective of Stem Cell-Based Regenerative Medicine. Stem Cells Dev 2020; 28:1059-1077. [PMID: 31170887 DOI: 10.1089/scd.2019.0073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is a relatively frequent disease within a range 0.5%-5.0% of population, with higher frequency in females. While a resultant spinal deformity is usually medically benign condition, it produces far going psychosocial consequences, which warrant attention. The etiology of AIS is unknown and current therapeutic approaches are symptomatic only, and frequently inconvenient or invasive. Muscular contribution to AIS is widely recognized, although it did not translate to clinical routine as yet. Muscle asymmetry has been documented by pathological examinations as well as systemic muscle disorders frequently leading to scoliosis. It has been also reported numerous genetic, metabolic and radiological alterations in patients with AIS, which are linked to muscular and neuromuscular aspects. Therefore, muscles might be considered an attractive and still insufficiently exploited therapeutic target for AIS. Stem cell-based regenerative medicine is rapidly gaining momentum based on the tremendous progress in understanding of developmental biology. It comes also with a toolbox of various stem cells such as satellite cells or mesenchymal stem cells, which could be transplanted; also, the knowledge acquired in research on regenerative medicine can be applied to manipulation of endogenous stem cells to obtain desired therapeutic goals. Importantly, paravertebral muscles are located relatively superficially; therefore, they can be an easy target for minimally invasive approaches to treatment of AIS. It comes in pair with a fast progress in image guidance, which allows for precise delivery of therapeutic agents, including stem cells to various organs such as brain, muscles, and others. Summing up, it seems that there is a link between AIS, muscles, and stem cells, which might be worth of further investigations with a long-term goal of setting foundations for eventual bench-to-bedside translation.
Collapse
Affiliation(s)
- Edyta Brzoska
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lukasz Kalkowski
- 2Department of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamil Kowalski
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Pawel Michalski
- 3Spine Surgery Department, Institute of Mother and Child, Warsaw, Poland
| | - Pawel Kowalczyk
- 4Department of Neurosurgery, Children's Memorial Health Institute, Warsaw, Poland
| | - Bartosz Mierzejewski
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Piotr Walczak
- 5Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,6Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maria A Ciemerych
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Miroslaw Janowski
- 5Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,6Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
3
|
Archacka K, Bem J, Brzoska E, Czerwinska AM, Grabowska I, Kasprzycka P, Hoinkis D, Siennicka K, Pojda Z, Bernas P, Binkowski R, Jastrzebska K, Kupiec A, Malesza M, Michalczewska E, Soszynska M, Ilach K, Streminska W, Ciemerych MA. Beneficial Effect of IL-4 and SDF-1 on Myogenic Potential of Mouse and Human Adipose Tissue-Derived Stromal Cells. Cells 2020; 9:cells9061479. [PMID: 32560483 PMCID: PMC7349575 DOI: 10.3390/cells9061479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Under physiological conditions skeletal muscle regeneration depends on the satellite cells. After injury these cells become activated, proliferate, and differentiate into myofibers reconstructing damaged tissue. Under pathological conditions satellite cells are not sufficient to support regeneration. For this reason, other cells are sought to be used in cell therapies, and different factors are tested as a tool to improve the regenerative potential of such cells. Many studies are conducted using animal cells, omitting the necessity to learn about human cells and compare them to animal ones. Here, we analyze and compare the impact of IL-4 and SDF-1, factors chosen by us on the basis of their ability to support myogenic differentiation and cell migration, at mouse and human adipose tissue-derived stromal cells (ADSCs). Importantly, we documented that mouse and human ADSCs differ in certain reactions to IL-4 and SDF-1. In general, the selected factors impacted transcriptome of ADSCs and improved migration and fusion ability of cells in vitro. In vivo, after transplantation into injured muscles, mouse ADSCs more eagerly participated in new myofiber formation than the human ones. However, regardless of the origin, ADSCs alleviated immune response and supported muscle reconstruction, and cytokine treatment enhanced these effects. Thus, we documented that the presence of ADSCs improves skeletal muscle regeneration and this influence could be increased by cell pretreatment with IL-4 and SDF-1.
Collapse
Affiliation(s)
- Karolina Archacka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Joanna Bem
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Edyta Brzoska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Areta M. Czerwinska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Iwona Grabowska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Paulina Kasprzycka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Dzesika Hoinkis
- Intelliseq Ltd., Stanisława Konarskiego 42/13, 30-046 Krakow, Poland;
| | - Katarzyna Siennicka
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, W.K. Roentgena 5, 02-781 Warsaw, Poland; (K.S.); (Z.P.)
| | - Zygmunt Pojda
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, W.K. Roentgena 5, 02-781 Warsaw, Poland; (K.S.); (Z.P.)
| | - Patrycja Bernas
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Robert Binkowski
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Kinga Jastrzebska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Aleksandra Kupiec
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Malgorzata Malesza
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Emilia Michalczewska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Marta Soszynska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Katarzyna Ilach
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Wladyslawa Streminska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
| | - Maria A. Ciemerych
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland; (K.A.); (J.B.); (E.B.); (A.M.C.); (I.G.); (P.K.); (P.B.); (R.B.); (K.J.); (A.K.); (M.M.); (E.M.); (M.S.); (K.I.); (W.S.)
- Correspondence: ; Tel.: +48-22-55-42-216
| |
Collapse
|
4
|
IL-4 and SDF-1 Increase Adipose Tissue-Derived Stromal Cell Ability to Improve Rat Skeletal Muscle Regeneration. Int J Mol Sci 2020; 21:ijms21093302. [PMID: 32392778 PMCID: PMC7246596 DOI: 10.3390/ijms21093302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle regeneration depends on the satellite cells, which, in response to injury, activate, proliferate, and reconstruct damaged tissue. However, under certain conditions, such as large injuries or myopathies, these cells might not sufficiently support repair. Thus, other cell populations, among them adipose tissue-derived stromal cells (ADSCs), are tested as a tool to improve regeneration. Importantly, the pro-regenerative action of such cells could be improved by various factors. In the current study, we tested whether IL-4 and SDF-1 could improve the ability of ADSCs to support the regeneration of rat skeletal muscles. We compared their effect at properly regenerating fast-twitch EDL and poorly regenerating slow-twitch soleus. To this end, ADSCs subjected to IL-4 and SDF-1 were analyzed in vitro and also in vivo after their transplantation into injured muscles. We tested their proliferation rate, migration, expression of stem cell markers and myogenic factors, their ability to fuse with myoblasts, as well as their impact on the mass, structure and function of regenerating muscles. As a result, we showed that cytokine-pretreated ADSCs had a beneficial effect in the regeneration process. Their presence resulted in improved muscle structure and function, as well as decreased fibrosis development and a modulated immune response.
Collapse
|
5
|
Grabowska I, Zimowska M, Maciejewska K, Jablonska Z, Bazga A, Ozieblo M, Streminska W, Bem J, Brzoska E, Ciemerych MA. Adipose Tissue-Derived Stromal Cells in Matrigel Impacts the Regeneration of Severely Damaged Skeletal Muscles. Int J Mol Sci 2019; 20:E3313. [PMID: 31284492 PMCID: PMC6651806 DOI: 10.3390/ijms20133313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023] Open
Abstract
In case of large injuries of skeletal muscles the pool of endogenous stem cells, i.e., satellite cells, might be not sufficient to secure proper regeneration. Such failure in reconstruction is often associated with loss of muscle mass and excessive formation of connective tissue. Therapies aiming to improve skeletal muscle regeneration and prevent fibrosis may rely on the transplantation of different types of stem cell. Among such cells are adipose tissue-derived stromal cells (ADSCs) which are relatively easy to isolate, culture, and manipulate. Our study aimed to verify applicability of ADSCs in the therapies of severely injured skeletal muscles. We tested whether 3D structures obtained from Matrigel populated with ADSCs and transplanted to regenerating mouse gastrocnemius muscles could improve the regeneration. In addition, ADSCs used in this study were pretreated with myoblasts-conditioned medium or anti-TGFβ antibody, i.e., the factors modifying their ability to proliferate, migrate, or differentiate. Analyses performed one week after injury allowed us to show the impact of 3D cultured control and pretreated ADSCs at muscle mass and structure, as well as fibrosis development immune response of the injured muscle.
Collapse
Affiliation(s)
- Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Malgorzata Zimowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Karolina Maciejewska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Zuzanna Jablonska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Anna Bazga
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Michal Ozieblo
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Wladyslawa Streminska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Joanna Bem
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| |
Collapse
|
6
|
Kowalski K, Kołodziejczyk A, Sikorska M, Płaczkiewicz J, Cichosz P, Kowalewska M, Stremińska W, Jańczyk-Ilach K, Koblowska M, Fogtman A, Iwanicka-Nowicka R, Ciemerych MA, Brzoska E. Stem cells migration during skeletal muscle regeneration - the role of Sdf-1/Cxcr4 and Sdf-1/Cxcr7 axis. Cell Adh Migr 2016; 11:384-398. [PMID: 27736296 PMCID: PMC5569967 DOI: 10.1080/19336918.2016.1227911] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The skeletal muscle regeneration occurs due to the presence of tissue specific stem cells - satellite cells. These cells, localized between sarcolemma and basal lamina, are bound to muscle fibers and remain quiescent until their activation upon muscle injury. Due to pathological conditions, such as extensive injury or dystrophy, skeletal muscle regeneration is diminished. Among the therapies aiming to ameliorate skeletal muscle diseases are transplantations of the stem cells. In our previous studies we showed that Sdf-1 (stromal derived factor −1) increased migration of stem cells and their fusion with myoblasts in vitro. Importantly, we identified that Sdf-1 caused an increase in the expression of tetraspanin CD9 - adhesion protein involved in myoblasts fusion. In the current study we aimed to uncover the details of molecular mechanism of Sdf-1 action. We focused at the Sdf-1 receptors - Cxcr4 and Cxcr7, as well as signaling pathways induced by these molecules in primary myoblasts, as well as various stem cells - mesenchymal stem cells and embryonic stem cells, i.e. the cells of different migration and myogenic potential. We showed that Sdf-1 altered actin organization via FAK (focal adhesion kinase), Cdc42 (cell division control protein 42), and Rac-1 (Ras-Related C3 Botulinum Toxin Substrate 1). Moreover, we showed that Sdf-1 modified the transcription profile of genes encoding factors engaged in cells adhesion and migration. As the result, cells such as primary myoblasts or embryonic stem cells, became characterized by more effective migration when transplanted into regenerating muscle.
Collapse
Affiliation(s)
- Kamil Kowalski
- a Department of Cytology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | | | - Maria Sikorska
- a Department of Cytology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Jagoda Płaczkiewicz
- a Department of Cytology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Paulina Cichosz
- a Department of Cytology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Magdalena Kowalewska
- b Department of Molecular and Translational Oncology , Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology , Warsaw , Poland.,c Department of Immunology, Biochemistry and Nutrition , Medical University of Warsaw , Warsaw , Poland
| | - Władysława Stremińska
- a Department of Cytology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | | | - Marta Koblowska
- d Laboratory of Systems Biology, Faculty of Biology, University of Warsaw , Warsaw , Poland.,e Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland
| | - Anna Fogtman
- e Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland
| | - Roksana Iwanicka-Nowicka
- d Laboratory of Systems Biology, Faculty of Biology, University of Warsaw , Warsaw , Poland.,e Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland
| | - Maria A Ciemerych
- a Department of Cytology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Edyta Brzoska
- a Department of Cytology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| |
Collapse
|
7
|
Czerwinska AM, Nowacka J, Aszer M, Gawrzak S, Archacka K, Fogtman A, Iwanicka-Nowicka R, Jańczyk-Ilach K, Koblowska M, Ciemerych MA, Grabowska I. Cell cycle regulation of embryonic stem cells and mouse embryonic fibroblasts lacking functional Pax7. Cell Cycle 2016; 15:2931-2942. [PMID: 27610933 PMCID: PMC5105925 DOI: 10.1080/15384101.2016.1231260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The transcription factor Pax7 plays a key role during embryonic myogenesis and in adult organisms in that it sustains the proper function of satellite cells, which serve as adult skeletal muscle stem cells. Recently we have shown that lack of Pax7 does not prevent the myogenic differentiation of pluripotent stem cells. In the current work we show that the absence of functional Pax7 in differentiating embryonic stem cells modulates cell cycle facilitating their proliferation. Surprisingly, deregulation of Pax7 function also positively impacts at the proliferation of mouse embryonic fibroblasts. Such phenotypes seem to be executed by modulating the expression of positive cell cycle regulators, such as cyclin E.
Collapse
Affiliation(s)
- Areta M Czerwinska
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Joanna Nowacka
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Magdalena Aszer
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Sylwia Gawrzak
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Karolina Archacka
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Anna Fogtman
- b Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland
| | - Roksana Iwanicka-Nowicka
- b Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland.,c Department of Systems Biology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Katarzyna Jańczyk-Ilach
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Marta Koblowska
- b Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland.,c Department of Systems Biology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Maria A Ciemerych
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Iwona Grabowska
- a Department of Cytology , Institute of Zoology, Faculty of Biology, University of Warsaw , Warsaw , Poland
| |
Collapse
|
8
|
Xiao L, Lee KKH. BRE facilitates skeletal muscle regeneration by promoting satellite cell motility and differentiation. Biol Open 2016; 5:100-11. [PMID: 26740569 PMCID: PMC4823978 DOI: 10.1242/bio.012450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The function of the Bre gene in satellite cells was investigated during skeletal muscle regeneration. The tibialis anterior leg muscle was experimentally injured in Bre knockout mutant (BRE-KO) mice. It was established that the accompanying muscle regeneration was impaired as compared with their normal wild-type counterparts (BRE-WT). There were significantly fewer pax7+ satellite cells and smaller newly formed myofibers present in the injury sites of BRE-KO mice. Bre was required for satellite cell fusion and myofiber formation. The cell fusion index and average length of newly-formed BRE-KO myofibers were found to be significantly reduced as compared with BRE-WT myofibers. It is well established that satellite cells are highly invasive which confers on them the homing ability to reach the muscle injury sites. Hence, we tracked the migratory behavior of these cells using time-lapse microscopy. Image analysis revealed no difference in directionality of movement between BRE-KO and BRE-WT satellite cells but there was a significant decrease in the velocity of BRE-KO cell movement. Moreover, chemotactic migration assays indicated that BRE-KO satellite cells were significantly less responsive to chemoattractant SDF-1α than BRE-WT satellite cells. We also established that BRE normally protects CXCR4 from SDF-1α-induced degradation. In sum, BRE facilitates skeletal muscle regeneration by enhancing satellite cell motility, homing and fusion. Summary: BRE facilitates skeletal muscle regeneration by promoting satellite cell motility and differentiation, probably by protecting CXCR4 from degradation.
Collapse
Affiliation(s)
- Lihai Xiao
- Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong
| | - Kenneth Ka Ho Lee
- Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
9
|
Świerczek B, Ciemerych MA, Archacka K. From pluripotency to myogenesis: a multistep process in the dish. J Muscle Res Cell Motil 2015; 36:363-75. [PMID: 26715014 PMCID: PMC4762919 DOI: 10.1007/s10974-015-9436-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/30/2015] [Indexed: 12/11/2022]
Abstract
Pluripotent stem cells (PSCs), such as embryonic stem cells or induced pluripotent stem cells are a promising source of cells for regenerative medicine as they can differentiate into all cell types building a mammalian body. However, protocols leading to efficient and safe in vitro generation of desired cell types must be perfected before PSCs can be used in cell therapies or tissue engineering. In vivo, i.e. in developing mouse embryo or teratoma, PSCs can differentiate into skeletal muscle, but in vitro their spontaneous differentiation into myogenic cells is inefficient. Numerous attempts have been undertaken to enhance this process. Many of them involved mimicking the interactions occurring during embryonic myogenesis. The key regulators of embryonic myogenesis, such as Wnts proteins, fibroblast growth factor 2, and retinoic acid, have been tested to improve the frequency of in vitro myogenic differentiation of PSCs. This review summarizes the current state of the art, comparing spontaneous and directed myogenic differentiation of PSCs as well as the protocols developed this far to facilitate this process.
Collapse
Affiliation(s)
- Barbara Świerczek
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Karolina Archacka
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
10
|
Grabowska I, Mazur MA, Kowalski K, Helinska A, Moraczewski J, Stremińska W, Hoser G, Kawiak J, Ciemerych MA, Brzoska E. Progression of inflammation during immunodeficient mouse skeletal muscle regeneration. J Muscle Res Cell Motil 2015; 36:395-404. [PMID: 26613733 PMCID: PMC4762921 DOI: 10.1007/s10974-015-9433-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/18/2015] [Indexed: 12/31/2022]
Abstract
The skeletal muscle injury triggers the inflammatory response which is crucial for damaged muscle fiber degradation and satellite cell activation. Immunodeficient mice are often used as a model to study the myogenic potential of transplanted human stem cells. Therefore, it is crucial to elucidate whether such model truly reflects processes occurring under physiological conditions. To answer this question we compared skeletal muscle regeneration of BALB/c, i.e. animals producing all types of inflammatory cells, and SCID mice. Results of our study documented that initial stages of muscles regeneration in both strains of mice were comparable. However, lower number of mononucleated cells was noticed in regenerating SCID mouse muscles. Significant differences in the number of CD14-/CD45+ and CD14+/CD45+ cells between BALB/c and SCID muscles were also observed. In addition, we found important differences in M1 and M2 macrophage levels of BALB/c and SCID mouse muscles identified by CD68 and CD163 markers. Thus, our data show that differences in inflammatory response during muscle regeneration, were not translated into significant modifications in muscle regeneration.
Collapse
Affiliation(s)
- Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St., 02-096, Warsaw, Poland
| | - Magdalena A Mazur
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St., 02-096, Warsaw, Poland
| | - K Kowalski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St., 02-096, Warsaw, Poland
| | - A Helinska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St., 02-096, Warsaw, Poland
| | - Jerzy Moraczewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St., 02-096, Warsaw, Poland
| | - Władysława Stremińska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St., 02-096, Warsaw, Poland
| | - Grażyna Hoser
- Laboratory of Flow Cytometry, Medical Center of Postgraduate Education, Marymoncka 99/103 St., 01-813, Warsaw, Poland
| | - Jerzy Kawiak
- Laboratory of Flow Cytometry, Medical Center of Postgraduate Education, Marymoncka 99/103 St., 01-813, Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St., 02-096, Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St., 02-096, Warsaw, Poland.
| |
Collapse
|
11
|
Brzoska E, Kowalski K, Markowska-Zagrajek A, Kowalewska M, Archacki R, Plaskota I, Stremińska W, Jańczyk-Ilach K, Ciemerych MA. Sdf-1 (CXCL12) induces CD9 expression in stem cells engaged in muscle regeneration. Stem Cell Res Ther 2015; 6:46. [PMID: 25890097 PMCID: PMC4445299 DOI: 10.1186/s13287-015-0041-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/31/2014] [Accepted: 03/05/2015] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Understanding the mechanism of stem cell mobilization into injured skeletal muscles is a prerequisite step for the development of muscle disease therapies. Many of the currently studied stem cell types present myogenic potential; however, when introduced either into the blood stream or directly into the tissue, they are not able to efficiently engraft injured muscle. For this reason their use in therapy is still limited. Previously, we have shown that stromal-derived factor-1 (Sdf-1) caused the mobilization of endogenous (not transplanted) stem cells into injured skeletal muscle improving regeneration. Here, we demonstrate that the beneficial effect of Sdf-1 relies on the upregulation of the tetraspanin CD9 expression in stem cells. METHODS The expression pattern of adhesion proteins, including CD9, was analysed after Sdf-1 treatment during regeneration of rat skeletal muscles and mouse Pax7-/- skeletal muscles, that are characterized by the decreased number of satellite cells. Next, we examined the changes in CD9 level in satellite cells-derived myoblasts, bone marrow-derived mesenchymal stem cells, and embryonic stem cells after Sdf-1 treatment or silencing expression of CXCR4 and CXCR7. Finally, we examined the potential of stem cells to fuse with myoblasts after Sdf-1 treatment. RESULTS In vivo analyses of Pax7-/- mice strongly suggest that Sdf-1-mediates increase in CD9 levels also in mobilized stem cells. In the absence of CXCR4 receptor the effect of Sdf-1 on CD9 expression is blocked. Next, in vitro studies show that Sdf-1 increases the level of CD9 not only in satellite cell-derived myoblasts but also in bone marrow derived mesenchymal stem cells, as well as embryonic stem cells. Importantly, the Sdf-1 treated cells migrate and fuse with myoblasts more effectively. CONCLUSIONS We suggest that Sdf-1 binding CXCR4 receptor improves skeletal muscle regeneration by upregulating expression of CD9 and thus, impacting at stem cells mobilization to the injured muscles.
Collapse
Affiliation(s)
- Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Kamil Kowalski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | | | - Magdalena Kowalewska
- Department of Molecular and Translational Oncology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland. .,Department of Immunology, Biochemistry and Nutrition, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland.
| | - Rafał Archacki
- Departament of Systems Biology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, 02-106, Warsaw, Poland.
| | - Izabela Plaskota
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Władysława Stremińska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Katarzyna Jańczyk-Ilach
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Maria A Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
12
|
Li P, Cui K, Zhang B, Wang Z, Shen Y, Wang X, Zhang J, Tong F, Li S. Transplantation of human umbilical cord-derived mesenchymal stems cells for the treatment of Becker muscular dystrophy in affected pedigree members. Int J Mol Med 2015; 35:1051-7. [PMID: 25647308 DOI: 10.3892/ijmm.2015.2084] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/20/2015] [Indexed: 11/05/2022] Open
Abstract
The regeneration of muscle tissue has been achieved using multipotent mesenchymal stem cells in mouse models of injured skeletal muscle. In the present study, the utility of multipotent human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in the treatment of Becker muscular dystrophy (BMD), a genetic disease where muscle tissue fails to regenerate, was examined in members from a pedigree affected by BMD. The disease status was evaluated in 4 affected pedigree members (II1, II2, II3 and III2; aged 50, 46, 42 and 6 years, respectively). The transplantation of the hUC‑MSCs (performed on 3 patients, I2, II3 and III2) was performed by infusion with an intravenous drip over a 30‑min period, and the patients were evaluated at 1, 3, 4 and 12 weeks following the procedure. The evaluation was based on physical characteristics, as well as on molecular testing for serum creatine kinase (CK) and lactate dehydrogenase (LDH) levels and a histological examination of muscle biopsies. The patients suffered no adverse reactions in response to the transplantation of the hUC‑MSCs. At 1 week following transplantation all 3 patients showed improvement in the muscle force of the limbs, muscle size and daily activity. The walking gait of patient III2 had improved by 1 week post-transplantation and reached a normal status by 12 weeks. Serum CK and LDH levels were decreased relative to the baseline levels. A histological examination of muscle biopsies displayed no obvious tissue regeneration. In conclusion, the treatment of patients with BMD using hUC-MSCs was safe and of therapeutic benefit that lasted for up to 12 weeks. hUC-MSCs are, therefore, a potential cell therapy-based treatment option for patients with muscular dystrophies.
Collapse
Affiliation(s)
- Pang Li
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital, Jinan, Shandong 250011, P.R. China
| | - Kai Cui
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital, Jinan, Shandong 250011, P.R. China
| | - Bo Zhang
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital, Jinan, Shandong 250011, P.R. China
| | - Zhendan Wang
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital, Jinan, Shandong 250011, P.R. China
| | - Yangyang Shen
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital, Jinan, Shandong 250011, P.R. China
| | - Xiangyu Wang
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital, Jinan, Shandong 250011, P.R. China
| | - Jianbo Zhang
- Department of Pathology, Shandong Cancer Hospital, Jinan, Shandong 250011, P.R. China
| | - Feng Tong
- The Dean's Office, Shandong Cancer Hospital, Jinan, Shandong 250011, P.R. China
| | - Sheng Li
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital, Jinan, Shandong 250011, P.R. China
| |
Collapse
|
13
|
Effects of Human Mesenchymal Stem Cells Isolated from Wharton's Jelly of the Umbilical Cord and Conditioned Media on Skeletal Muscle Regeneration Using a Myectomy Model. Stem Cells Int 2014; 2014:376918. [PMID: 25379040 PMCID: PMC4212633 DOI: 10.1155/2014/376918] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle has good regenerative capacity, but the extent of muscle injury and the developed fibrosis might prevent complete regeneration. The in vivo application of human mesenchymal stem cells (HMSCs) of the umbilical cord and the conditioned media (CM) where the HMSCs were cultured and expanded, associated with different vehicles to induce muscle regeneration, was evaluated in a rat myectomy model. Two commercially available vehicles and a spherical hydrogel developed by our research group were used. The treated groups obtained interesting results in terms of muscle regeneration, both in the histological and in the functional assessments. A less evident scar tissue, demonstrated by collagen type I quantification, was present in the muscles treated with HMSCs or their CM. In terms of the histological evaluation performed by ISO 10993-6 scoring, it was observed that HMSCs apparently have a long-term negative effect, since the groups treated with CM presented better scores. CM could be considered an alternative to the in vivo transplantation of these cells, as it can benefit from the local tissue response to secreted molecules with similar results in terms of muscular regeneration. Searching for an optimal vehicle might be the key point in the future of skeletal muscle tissue engineering.
Collapse
|
14
|
Chen W, Xie M, Yang B, Bharadwaj S, Song L, Liu G, Yi S, Ye G, Atala A, Zhang Y. Skeletal myogenic differentiation of human urine-derived cells as a potential source for skeletal muscle regeneration. J Tissue Eng Regen Med 2014; 11:334-341. [DOI: 10.1002/term.1914] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 03/11/2014] [Accepted: 04/20/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Wei Chen
- Wake Forest Institute for Regenerative Medicine; Wake Forest School of Medicine; Winston-Salem NC USA
- Department of Urology, Xinqiao Hospital; Third Military Medical University; Chongqing People's Republic of China
| | - Minkai Xie
- Wake Forest Institute for Regenerative Medicine; Wake Forest School of Medicine; Winston-Salem NC USA
- Department of Urology; Shanghai Jiaotong University Affiliated Sixth People's Hospital; Shanghai People's Republic of China
- Shanghai Oriental Institute for Urologic Reconstruction; Shanghai People's Republic of China
| | - Bin Yang
- Wake Forest Institute for Regenerative Medicine; Wake Forest School of Medicine; Winston-Salem NC USA
- Department of Urology, Shanghai Tenth People's Hospital; Tongji University School of Medicine; Shanghai People's Republic of China
| | - Shantaram Bharadwaj
- Wake Forest Institute for Regenerative Medicine; Wake Forest School of Medicine; Winston-Salem NC USA
| | - Lujie Song
- Wake Forest Institute for Regenerative Medicine; Wake Forest School of Medicine; Winston-Salem NC USA
- Department of Urology; Shanghai Jiaotong University Affiliated Sixth People's Hospital; Shanghai People's Republic of China
- Shanghai Oriental Institute for Urologic Reconstruction; Shanghai People's Republic of China
| | - Guihua Liu
- Wake Forest Institute for Regenerative Medicine; Wake Forest School of Medicine; Winston-Salem NC USA
| | - Shanhong Yi
- Department of Urology, Xinqiao Hospital; Third Military Medical University; Chongqing People's Republic of China
| | - Gang Ye
- Department of Urology, Xinqiao Hospital; Third Military Medical University; Chongqing People's Republic of China
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine; Wake Forest School of Medicine; Winston-Salem NC USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine; Wake Forest School of Medicine; Winston-Salem NC USA
| |
Collapse
|
15
|
Wang L, Weiss ML, Detamore MS. Recent Patents Pertaining to Immune Modulation and Musculoskeletal Regeneration with Wharton's Jelly Cells. ACTA ACUST UNITED AC 2013; 3:182-192. [PMID: 26279972 DOI: 10.2174/22102965113039990020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Umbilical cord mesenchymal stromal cells (UCMSCs) are isolated from Wharton's jelly in the umbilical cord at birth, and offer advantages over adult mesenchymal stromal cells (MSCs) such as highly efficient isolation, faster proliferation in vitro, a broader differentiation potential, and non-invasive harvesting procedure. Their expansion and differentiation potential renders them a promising cell source for tissue engineering and clinical applications. This review discusses recent updates on the differentiation strategies for musculoskeletal tissue engineering including cartilage, bone, and muscle. In addition to tissue engineering applications, UCMSCs can be utilized to support hematopoiesis and modulate immune response. We review the patents relevant to the application of MSCs including UCMSCs in hematopoiesis and immune modulation. Finally, the current hurdles in the clinical translation of UCMSCs are discussed. During clinical translation, it is critical to develop large-scale manufacturing of UCMSCs as well as the composition of expansion and differentiation media. Four clinical trials to date have examined the safety and efficacy of UCMSCs. Once public banking of UCMSCs is available to supply matched allogeneic units and once UCMSC manufacturing is standardized, we anticipate that UCMSCs will be more widely used in clinical trials.
Collapse
Affiliation(s)
- Limin Wang
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
| | - Mark L Weiss
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Michael S Detamore
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
16
|
Brzoska E, Kowalewska M, Markowska-Zagrajek A, Kowalski K, Archacka K, Zimowska M, Grabowska I, Czerwińska AM, Czarnecka-Góra M, Stremińska W, Jańczyk-Ilach K, Ciemerych MA. Sdf-1 (CXCL12) improves skeletal muscle regeneration via the mobilisation of Cxcr4 and CD34 expressing cells. Biol Cell 2012; 104:722-37. [PMID: 22978573 DOI: 10.1111/boc.201200022] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 09/11/2012] [Indexed: 01/27/2023]
Abstract
BACKGROUND INFORMATION The regeneration of skeletal muscles involves satellite cells, which are muscle-specific precursor cells. In muscles, injured either mechanically or as a consequence of a disease, such as muscular dystrophy, local release of the growth factors and cytokines leads to satellite cells activation, proliferation and differentiation of the resulting myoblasts, followed by the formation of new myofibres. Various cell types, such as stem and progenitor cells, originating from other tissues different than the muscle, are also able to follow a myogenic program. Participation of these cells in the repair process depends on their precise mobilisation to the site of the injury. RESULTS In this study, we showed that stromal-derived factor-1 (Sdf-1) impacts on the mobilisation of CXC chemokine receptor (Cxcr)4-positive cells and improves skeletal muscle regeneration. Analysis of isolated and in vitro cultured satellite cells showed that Sdf-1 did not influence myoblasts proliferation and expression of myogenic regulatory transcription factors but induced migration of the myoblasts in Cxcr4-dependent ways. This phenomenon was also associated with the increased activity of crucial extracellular matrix modifiers, i.e. metalloproteases Mmp-2 and Mmp-9. CONCLUSIONS Thus, positive impact of Sdf-1 on muscle regeneration is related to the mobilisation of endogenous cells, that is satellite cells and myoblasts, as well as non-muscle stem cells, expressing Cxcr4 and CD34.
Collapse
Affiliation(s)
- Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw 02-096, Poland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|